
- 相关推荐
《绝对值》优秀教案(精选5篇)
在教学工作者实际的教学活动中,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。来参考自己需要的教案吧!以下是小编为大家收集的《绝对值》优秀教案(精选5篇),希望对大家有所帮助。
《绝对值》优秀教案1
导学目标
1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。
2、通过应用绝对值解决实际问题绝对值的意义和作用。
导学重点:
正确理解绝对值的概念?
导学难点:
负数大小比较??
导学过程
温故:
1、下列各数中:
+7,—2,,—8?3,0,+0?01,—,1,哪些是正数?哪些是负数?哪些是非负数?
2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:
—3,4,0,3,—1?5,—4,,2?
链接:
问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?
知新:
1、什么叫绝对值?
在数轴上,一个数所对应的点与的叫做这个数的绝对值.例如+5的绝对值等于5,记作+5=5;—3的绝对值等于3,记作。
2、绝对值的特点有哪些?
(1)一个正数的绝对值是;例如,4=,+7.1=。
(2)一个负数的绝对值是;例如,-2=,-5.2=。
(3)0的绝对值是.
容易看出,两个互为相反数的数的绝对值.如—5=+5=5.
练一练:
1、已知||=5,求的值。
2、填空:
(1)+3的'符号是_____,绝对值是______;
(2)—3的符号是_____,绝对值是______;
(3)—的符号是____,绝对值是______;
(4)10—5的符号是_____,绝对值是______?
3、填空:
(1)符号是+号,绝对值是7的数是________;
(2)符号是—号,绝对值是7的数是________;
(3)符号是—号,绝对值是0?35的数是________;
(4)符号是+号,绝对值是1的数是________;
4、
(1)绝对值是的数有几个?各是什么?
(2)绝对值是0的数有几个?各是什么?
(3)有没有绝对值是—2的数?
3、理解:
若用a表示一个数,当a是正数时可以表示成a>0,当a是负数时可以表示成a<0,这样,上面的绝对值的特点可用用符号语言可表示为:
(1)如果a>0,那么a=a;
(2)如果a<0,那么a=-a;
(3)如果a=0,那么a=0。
4、比较两个负数的大小
由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小
《绝对值》优秀教案2
教学目标
1.知识与技能。
①能根据一个数的绝对值表示距离,初步理解绝对值的概念,能求一个数的绝对值。
②通过应用绝对值解决实际问题,体会绝对值的意义和作用。
2.过程与方法
经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力。
3.情感、态度与价值观
①通过解释绝对值的几何意义,渗透数形结合的思想。
②体验运用直观知识解决数学问题的成功.
教学重点难点
重点:给出一个数,会求它的绝对值。
难点:绝对值的几何意义、代数定义的导出。
教与学互动设计
(一)创设情境,导入新课
活动:请两同学到讲台前,分别向左、向右行3米。
交流:
①他们所走的路线相同吗?
②若向右为正,分别可怎样表示他们的位置?
③他们所走的路程的远近是多少?
(二)合作交流,解读探究
观察出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,它们的__________不同,__________相同.
总结:例如6和-6两个数在数轴上的两点虽然分布在原点的`两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值。
绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│。
想一想-3的绝对值是什么?
《绝对值》优秀教案3
教学目标
1.了解绝对值的概念,会求有理数的绝对值;
2.会利用绝对值比较两个负数的大小;
3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。
教学建议
一、重点、难点分析
绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。
教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
二、知识结构
绝对值的定义;
绝对值的表示方法;
用绝对值比较有理数的大小。
三、教法建议
用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的.初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的.定义,即在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为绝对值的一种直观解释。
此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数。“非负数”的概念视学生的情况,逐步渗透,逐步提出。
四、有关绝对值的一些内容
1.绝对值的代数定义
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
2.绝对值的几何定义
在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。
3.绝对值的主要性质
(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零。
(4)两个相反数的绝对值相等。
五、运用绝对值比较有理数的大小
1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。
比较两个负数的方法步骤是:
(1)先分别求出两个负数的绝对值;
(2)比较这两个绝对值的大小;
(3)根据“两个负数,绝对值大的反而小”作出正确的判断。
2.两个正数大小的比较,与小学学习的方法一致,绝对值大的较大。
《绝对值》优秀教案4
教学目标:
知识目标:
(1)理解绝对值的概念及表示法。
(2)理解数的绝对值的几何意义。
能力目标:
(1)掌握求一个数的绝对值及有关的简单计算,
(2)掌握绝对值等于某一正数的有理数的求法,探索绝对值的简单应用。
情感目标:让学生经历绝对值的产生过程,体会数形结合思想。
教学重点、难点:
重点:绝对值的概念和求一个数的绝对值。
难点:绝对值的几何意义。
教学手段:
多媒体(powerpoint)教学与板书相结合。
教学过程:
一、新课引入
我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。
乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。例如有2位同学在书店购买书籍后回家,一位同学乘上甲出租车向东行驶10Km到达A处,另一位同学乘上乙出租车向西行驶10Km到达B处。
二、合作学习
把全班同学分4—5组分组讨论完成下面的三个问题
1:描述请大家用数轴来表示这一过程(记向东行驶的里程数为正)
2:思考两位同学付费额度是否一样?为什么?
3:结论付费额度与行驶方向有没有关系?
然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价)
这两位同学由于乘车离开书店的距离一样,所以付费额度也是一样的,与行驶方向无关。说明在数轴上的A(+10)、B(—10)两点到原点(书店)的距离是一样的,都是10。同样数轴上+5和—5两点到原点的距离也是一样的.。
我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。(注意是离开原点的距离)
如数轴上表示-5的点到原点的距离是5,所以—5的绝对值是5,记作;+5的绝对值也是5,记作。其实际意义是:数轴上+5这个点到原点的距离为5。(强调绝对值符号的书写格式)
三、课内练习
1、求下列各数的绝对值:-1.60-10+10同时说出它们的几何意义。
2、说出下列各数的绝对值:-7-2.0501000
由上述两题可概括出:(在教师的引导下让学生得出结论)
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,互为相反的两个数的绝对值相等。(注意一个数的绝对值不可能是负数,而是非负数。)
五、探究学习
1、某人因工作需要租出租车从A站出发,先向南行驶6Km至B处,后向北行驶10Km至C处,接着又向南行驶7Km至D处,最后又向北行驶2Km至E处。
请通过列式计算回答下列两个问题:
(1)这个人乘车一共行驶了多少千米?
(2)这个人最后的目的地在离出发地的什么方向上,相隔多少千米?
2、写出绝对值小于3的整数,并把它们记在数轴上。
六、小结
一头牛耕耘在一块田地上,忙碌了一整天,表面上它在原地踏步,没有踏出这块土地,但我们说,它付出了艰辛和汗水,因为它所走过的距离之和,有时候我们是无法想象的。这就是今天所学的绝对值的意义所在。所以绝对值是不考虑方向意义时的一种数值表示。
七、布置作业
做作业本中相应的部分。
《绝对值》优秀教案5
一、教学目标:
1.知识目标:
①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2.能力目标:
①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3.情感目标:
①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的'绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法
启发引导式、讨论式和谈话法
四、教学过程
(一)复习提问
问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?
(二)新授
1.引入
结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2.数a的绝对值的意义
①几何意义
一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|。
举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)
强调:表示0的点与原点的距离是0,所以|0|=0。
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义
把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
【《绝对值》优秀教案】相关文章:
绝对值教案优秀05-10
《绝对值》教案02-26
绝对值教案03-16
《绝对值》教案集合(5篇)09-11
数轴相反数与绝对值课堂教案04-02
绝对值说课稿范文03-09
绝对值教学反思03-03
七年级数学《绝对值》教案07-12
优秀教案优秀09-25
优秀的教案05-26