
- 相关推荐
五年级数学教案
作为一位杰出的老师,就不得不需要编写教案,教案是教学活动的总的组织纲领和行动方案。那么应当如何写教案呢?以下是小编整理的五年级数学教案,仅供参考,大家一起来看看吧。
五年级数学教案1
教学目标
1、知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。理解分数的意义,体会分数表示的部分与整体的关系。
2、运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。
3、学生在轻松和谐的氛围中主动参与、充分体验,感受数学与生活的密切联系,发展学生的数感。
教学内容分析:
小学阶段对于分数的研究大致分为5个阶段:低年级的平均分和除法、倍的认识、三年级的分数初步认识、五年级的分数再认识、分数的计算、六年级的比。从这些安排来看可以看出五年级的分数再认识是小学阶段一次系统的学习分数,这部分内容是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上由感性上升到理性的开始,是学习分数四则运算和应用的重要前提。
重难点
重点:
知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。
难点:
运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。
教学过程
活动1【导入】
一、沟通“1”、整数、分数的联系,度量中感受分数的产生和意义。
师:同学们学习过整数吗?如果用这张红色的纸条表示1,那么你能想办法表示出2吗?3怎样表示呢?我们发现有几个这样的“1”就可以用几来表示。
师:老师这里还有一张纸条(更长的纸条),你知道它表示几吗?(用1作为标准去量发现有不足1的)。
师:这段不足1的长度怎样表示呢?(用分数表示)
在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
师:猜一猜,这段不足1的长度是这个标准的几分之几呢?
老师给每个组的同学都提供了一些学具,请利用手中的学具验证你们的猜想。
预设1:两张绿色纸条拼成一个红色纸条,绿色纸条是红色纸条的
预设2:红色纸条对折,不足1的部分是红色纸条的
预设3:两张桔色的纸条。一张桔色的纸条是红色纸条的,两个就是。
我们发现我们只要找到不足1的部分与标准之间的关系,就可以用分数表示了。
在刚才的测量过程中我们发现不足1的部分没办法再以1为标准去测量了,但是我们发现可以用标准的去测量。下面我们就用标准的测量一下,看看粉色纸条是几个,你知道5个是几分之几吗?
活动2【讲授】
二、分物中体会单位“1”可以是多个物体
师:刚才我们找到了,生活中其他的地方有没有呢。
大米
1000克
拿出小片子,请你分别表示出它们的。
我们表示的都是,可是为什么对应的数量却都不相同呢?
回顾一下找的过程,你对分数又有了哪些新的体会?
师小结:除了可以把一个物体或一个图形平均分找到分数,也可以把多个图形或多个物体看作整体通过平均分找到分数。大家平均分的一个物体、一个图形、一个计量单位、一个整体,可以用自然数“1”表示,通常叫做单位“1”
活动3【讲授】
三、分物中认识分数单位,深入体会分数的意义。
师:刚才同学们准确的找到了这些糖的,下面同学们可以自由地利用这些糖来表示你喜欢的分数。
合作建议:
独立思考:想一想、画一画,用这些糖还能表示出哪些分数。
小组讨论:在小组内说一说你找到的.分数所表示的意义。
预设:
观察这两个分数你有什么发现吗?
相同点:都是把6块糖平均分成6份
不同点:取的份数不同
联系:2个是
师:你会表示吗?
师:我们发现有几个就是六分之几。
师:你会表示吗?
师:那么有几个就是三分之几。
像、这样的表示一份的分数就叫做分数单位。而像、、这样的分数,我们可以理解为它们都是由分数单位不断累积而成的。
师:有些同学还找到了一样的分数,对吗?
师:表示了这么多分数,谁能来说说分数的意义。
活动4【导入】
四、巩固练习
1、填一填
2、猜一猜
师:请你对自己今天课堂学习的表现和收获进行评价。这里有10颗星星,你认为你可以得到几颗呢?请在纸上进行涂色。
师:谁来说说你获得了这些星星的几分之几呢?请同学们根据他所说的分数想一想他给自己评了几颗星?
师:谁再来说说你自己评了几颗星,同学们想一想他获得了全部星星的几分之几?
师:同学们想不想知道我给大家今天的学习情况评几颗星呢?
出示
师:你知道这是几分之几吗?
有的同学在为没有得到全部的星星而感到遗憾,其实没有点亮的那半颗星才是我今天送给大家最宝贵的礼物,不满足是进步的首要条件,在陈老师心里你们每个人拥有着无限的潜能,我永远期待着你们更精彩的表现。
五年级数学教案2
教学目标
通过观察实物和动手操作等教学活动,使学生掌握长方体的特征,形成长方体的概念,发展学生的空间观念。
教学重点、难点
重点:长方体的特征。
难点:
教具、学具准备
①教师准备:实物,铁丝制作的长方体框架、投影仪。②学生准备:收集一些长方体开头的小纸盒
教 学过程
备 注
一、 复习引入:
1、我们已经学过这些图形,你能说出它们的名称吗?
2、你能将这些学过的图形分类吗?(平面立体)
3、揭示课题:长方体也好、正方体也好都是立体图形,这节课我们继续研究“长方体的认识”
二、探索实践
1.让学生拿出准备好的一个长方体的纸盒来观察它们的特征。
(1)认识长方体的面。(让学生分组讨论)
①用手摸一摸它有几个面(注意培养学生有顺序地观察)
②每个面是什么形状?(注意出示也有两个相对的面是正方形)
③哪些面完全相等?(演示给学生看)
再根据学生的发言用投影归纳出:
长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)相对的面的形状、大小完全相同。
(2)认识长方体的棱。
让学生用手摸一摸长方体每两个面相交的地方(有意引导学生有顺序地摸)。这些地方我们给它起个什么名字呢?(学生按自己的想法来做,最后统一为“棱”)
再让学生分小组去数和量:
①数:长方体有多少条棱?(要说出数的方法)
②量:动手量一量每条棱的长度,看哪些棱的长度相等?(有什么规律?)
根据学生的发言归纳出:(投影显示)
长方体有12条棱,相对的4条棱的长度相等。
(3)认识长方体的顶点。
让学生拿一个长方体纸盒,用手摸长方体每三条棱相交的地方,并提问:
教学过程
备 注
①你们知道它叫什么吗?(顶点)
②长方体有几个顶点?(8个)
(4)拿一个长方体放在讲台上让学生观察。
最多能看到几个面?(3个面)
讲:所以我们通常把长方体画成这样。
(5)用填空的形式小结长方体的特征。(投影显示)
长方体是由个长方形(特殊情况有两个相对的面是形)围成的图形。在一个长方体中,相对的两个面,相对的棱的长度。
2、教学长方体的长、宽、高。
让学生分组讨论如下的两个问题:
(1)它的12条棱可以分成几组?怎样分?
(2)相交于同一个顶点的三条棱长度相等吗?
找几名代表将测量结果告诉大家。
想一想:
(1)你知道相交于一个顶点的三条棱的长度分别叫做长方体的什么吗?(长、宽、高)
(2)长方体的长、宽、高的长短与这个长方体有没有关系?(投影显示出几个长、宽、高不同的`长方体)
结论:长方体的大小和形状是由它的长、宽、高决定的。
三、课堂实践
1.量一量教科书的长、宽、高。
2.练习的第2题。
3.练习的第3题。
五、课堂小结
由学生小结今天学习的内容。
口诀:
长方体立体形,8顶6面十二棱;
棱分长、宽、高,每组四条要记好;
6个面对着放,对应面都一样。
六、课外延伸
在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。
课后反思:在课堂教学过程中,让学生动手去,摸、碰,说长方体、正方体各个部分特征,学生是学习的主体,他们总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独到的见解,这样不仅使学生的好方法、好思路得以推广,而且对他们也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可拓宽教师的教学思路。很遗憾这个环节处理的不是很好。
五年级数学教案3
教学内容:
连乘、乘加、乘减和把整数乘法运算定律推广到小数。
教学目标:
1、掌握小数的连乘、乘加、乘减的运算顺序,并能按运算顺序正确计算结果。
2、理解整数乘法的交换律、结合律、分配律对于小数同样适用。
3、提高学生的类推能力,培养学生知识间存在着内在联系的思想。
教学过程:
课前谈话:前面我们学习了小数乘法,通过学习我们发现小数乘法与整数乘法间存在着紧密的联系。今天这节课我们继续学习新知识,看哪位同学学得快,掌握得好。
一、复习旧知
1、出示投影,先回答问题,再计算。
(1)12×5×60
(2)30×7+85
(3)250×4—200
教师提问:每个式题各含什么运算?是什么式题?每题的运算顺序是什么?
学生回答后,在练习本上计算结果。
订正:(1)3600(2)295(3)800
教师说明:小数的这些运算顺序跟整数是一样的。
教学意图:本环节通过三个式题复习整数连乘、乘加和乘减的运算顺序,并向学生说明小数的运算顺序跟整数一样,为下面学生将整数运算顺序迁移到小数作准备。
二、小数连乘、乘加、乘减
1、初步尝试。
出示例6:光明小学的`同学们在校园里种了300棵蓖麻,平均每棵收蓖麻籽0。18千克,每千克可榨油0。45千克,一共可榨油多少千克?
全班学生默读题目后,指名让学生说出怎样列算式,教师板书。然后让学生独立尝试把这道题做完,教师指名板书计算过程
0。45×0。18×300
=0。081×300
=24。3(千克)
答:一共可榨油24。3千克。
订正答案后,教师提问
(1)算式中有几步计算?每个数目都是小数吗?是什么式题?
(2)这个含有小数的连乘式你是按什么运算顺序进行计算的?(按从左到右的运算顺序进行计算。)
2、进行类推。
计算下列各题。
(1)72×0。81+10。4(2)7。06×2。4—5。7
学生先在练习本上独立解答,在订正答案时说说每题的运算顺序。
订正:(1)68。72(含有乘法与加法两种运算,先计算乘法,再计算加法。)(2)11。244(含有乘法与减法两种运算,先算乘法,再计算减法。)
3、教师小结:今天我们学习了小数的连乘、乘加、乘减。这些运算的运算顺序与整数相同。板书:连乘、乘加、乘减
教学意图:本环节利用迁移,让学生将整数的运算顺序类推到小数,尝试完成小数的连乘、乘加、乘减的运算,培养学生的类推能力。
三、整数乘法运算定律推广到小数
1、复习。
教师提问:我们在学习整数乘法时曾学习过几个运算定律,谁还记得是什么?用字母怎样表示?
教师贴出:a×b=b×a
(a×b)×c=a×(b×c)
(a+b)×c=a×c+b×c
提问学生:乘法交换律中两个数的范围是什么?结合律中三个数的范围是什么?分配律中三个数的范围是什么?(这些数的范围都是整数。)
2、观察讨论。
教师用投影出示两组算式,学生口答结果,然后教师用○将左右两组算式相连。
0。7×1。2○1。2×0。7
(0。8×0。5)×0。4○0。8×(0。5×0。4)
(2。4+3。6)×0。5○2。4×0。5+3。6×0。5
让学生观察这三组算式,并讨论以下问题
(1)这三组算式左右两边的结果相等吗?中间可以用什么符号连接?
(2)等号两边的算式有什么特点?与我们学过的什么知识一样?
(3)你能得出什么结论?
学生通过讨论将得出如下结论
①三组算式左右两边的结果相等,中间可以用等号连接。
②第一组是把两个相乘的数交换位置,结果不变,与学过的乘法交换律一样。第二组先把前两个数相乘,再与第三个数相乘,与先把后两个数相乘,再与第一个数相乘,结果相等,与乘法结合律一样。第三组是两个数的和与一个数相乘,与这两个数分别与这个数相乘后求和,结果不变,与乘法分配律一样。
③整数乘法运算定律在小数中同样适用。
教师提问:我们分别比较这三组算式左右两侧的式子,哪一个式子在计算中更为简便?(第一组写成竖式,右边的比较简便,第二组不明显,第三组左式比右式简便。)
3、教师小结:通过观察讨论,我们发现整数的乘法运算定律可以推广到小数乘法,并且利用这些运算定律可以使一些小数乘法计算更简便。
板书:整数乘法运算定律推广到小数乘法。
教学意图:本环节教师指导学生观察每组两个算式的特点以及它们的相等关系,并且通过讨论使学生认识到整数乘法运算定律对于小数也适用,同样可以使一些计算更加简便,从而培养学生的观察、比较能力。
四、巩固练习
1、填空,并说一说应用了哪个运算定律。(填在书上)
4。2×1。69=□×□
2。5×(0。77×0。4)=(□×□)×□
6。1×3。6+3。9×3。6=(□+□)×□
2、计算下面各题。
(1)19。4×6。1×2。3
(2)3。25×4。76—7。8
(3)18。1×0。92+3。93
(4)5。67×0。21—0。62
(5)7。2×0。18×28。5
(6)0。043×0。24+0。875
教师巡视,注意学生的运算顺序是否存在问题。
3、判断对错。
(1)50。4×1。95—1。9(2)3。76×0。25+25。8
=50。4×0。05 =0。9776+25。8
= 25。2 =26。7776
全体学生用手势判断,并说出错误原因。
4、应用题。
玉山农场新建一座温室,室内耕地面积是285平方米,全部栽种西红柿,一茬平均每平方米产6千克。每千克按1。30元计算,一共可收入多少元?
学生完成练习后,教师及时订正
2。(1)272。182(2)7。67(3)20。582(4)0。5707(5)36。936(6)0。88532
3。(1)运算顺序错误。改正:(2)计算错误。改正
50。4×1。95—1。9 3。76×0。25+25。8
=98。28—1。9 =0。94+25。8
=96。38 =26。74
4。1。30×6×285=2223(元)
教学意图:本环节通过多种练习使学生分别对整数乘法运算定律推广到小数乘法,与小数连乘、乘加、乘减这两部分知识进行巩固。其中第二题的六道计算题,各题目计算结果小数部分位数较多,除了注意学生的运算顺序是否正确外,还要注意学生的计算正确率。
五年级数学教案4
自学预设:
自学内容自学P43内容
指导方法自学P43
思考:
1、底面积是什么?
2、长方体和正方体的底面积是怎么求的?
1、长方体和正方体的体积的统一计算公式怎样?
尝试练习试着完成P43的做一做的第2题
教学内容:长方体和正方体体积的计算公式的统一。(完成P43内容及P45第8题)
教学目标:
1.使学生掌握长方体和正方体体积的统一计算公式,并会灵活地应用公式进行体积计算。
2.提高学生综合运用知识的.能力,培养学生的抽象概括能力。
教学重难点:运用公式进行计算。
教学过程:
一、创设情境
1、出下图中长方体的长、宽、高和正方体的棱长。
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究
1.认识长方体和正方体的底面。
通过预习你观察到到了什么?
生:图中画阴影部分的那一面我们把它叫做长方体或正方体的底面。师强调:这个面是由摆放的方式决定的。
2.长方体和正方体的底面面积。
(1)长方体和正方体的底面的面积叫做底面积
(2)怎样求长方体的底面积?(长方体的底面积=长×宽,即S=ab)怎样求正方体的底面积?(正方体的底面积=棱长×棱长,即S=)
(3)长方体和正方体体积计算公式的统一
思考:我们能不能把长方体和正方体的体积公式统一成一个公式呢?
长方体的体积=长×宽×高=底面积×高
正方体的体积=棱长×棱长×棱长=底面积×棱长
结论:长方体或正方体的体积=底面积×高
用字母表示:V=sh
3.练习:
完成P43“做一做”第2题。讲解:“横截面”通过实物直观演示,让学生理解他的实际意义,懂得一个物体平放,立体图形的左面和右面就叫做横截面,如果竖起来,横截面就成了底面。所以
三、巩固练习:完成P45题8。
四、练习拓展:
1.计算:
2.一根长方体木料,它的横截面的面积是0.15,长2m。5根这样的木料体积一共是多少?新课标第一
3.有100块底面积是42,高6cm的立方体石块。这些石块的体积一共是多少?
4.一个正方体的棱长的和是48cm,这个正方体的体积是多少?
五年级数学教案5
教学目标:
1.知识与技能
理解并掌握小数化分数和分数化小数的方法;
2.过程与方法
能熟练的将分数和小数互化;
3.情感态度价值观
通过教学,沟通分数与小数的联系,渗透事物是相互联系,可以相互转化的辩证唯物主义观点;
教学重、难点:
分数与小数互化的方法;
教具准备:
课件、投影仪。
教学过程:
教学环节
设计意图
教学预设
一、复习准备
通过两个题的复习,为这节课的学习做铺垫,这节课会用到这些解题的方法。
1.读出下面各小数,并说出它们的意义。
0.3,0.25,0.14,1.34,4.06,0.08,1.042,0.315。
2.求下面各题的商。(小数、分数。)
3÷4 15÷45 1÷8
5÷10 9÷10 6÷15
[过渡]:你们见过羚羊和鸵鸟吗?这两种动物跑的都很快,羚羊每分钟跑0.9千米,鸵鸟每分钟跑千米,你知道羚羊和鸵鸟赛跑谁能赢吗?
在我们的日常生活和进一步的.学习中,常会遇到一些比较分数和小数大小的实际问题,今天我们就来学习怎么比较分数和小数的大小。(板书课题)
二、探索发现
通过两种动物的赛跑比赛,沟通分数与小数的联系,让学生在自主的学习中发现小数与分数互化的方法。
师:想一想,我们该怎么解决上面提到的问题呢?你有什么方法呢?动手做一做看你能算出来吗?
先让学生自己来做,教师巡视,看学生的计算情况,同桌之间可以互相交流,然后找学生回答自己的作法。
生1:根据小数的意义,把0.9写成分数,0.9=,这时只要比较和这两个分数的大小即可。
师:对,这位同学很聪明,他依据小数的意义把小数化成分数,然后比较两个分数的大小。那怎样比较它们的大小呢?
生:在比较和的大小时,需要先把这两个数通分,它们的公分母是10,所以,>,由此可得0.9>,所以羚羊比鸵鸟跑的快。
师:这种方法很好,是先把小数化成了分数,然后再比较分数的大小。谁还有不同的方法?
生一齐:也可以把分数化成小数,然后比较两个小数的大小。
师:对,谁是用这种方法做的,来说一说。
生:把化成小数是:=4÷5=0.8,0.8
师:通过上面的分析过程,我们可以看出,在比较分数和小数的大小时,既可以把分数化成小数,也可以把小数化成分数。
[议一议]:怎样把分数化成小数?怎么把小数化成分数?
我们再来看下面的几个例题,通过例题我们来总结规律。(教师演示课件“分数与小数的互化.swf”)
三、课堂练习
通过练习熟练这节课所学知识。
课本P86“试一试”:
1.把下面的分数化成小数。(除不尽的保留两位小数)
2.把下面的小数化成分数。(能约分的要约分)
0.4 1.5 0.12 2.8
四、课堂小结
这节课你有哪些收获,同桌之间相互交流一下。
五、课后作业
课本P86“练一练”1、2、3题。
板书设计:
课题:分数、小数互化
1.复习
2.1分钟赛跑
3.例题
4.课堂练习
五年级数学教案6
教学目标
1.结合具体情境,在操作活动中,探索并理解分数乘整数的意义。
2.探索并掌握分数乘整数的计算方法,能正确计算。
3.能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。
教学重点
会用分数乘整数的计算法则真确进行计算。
教学难点
分析和解决分数乘整数的实际问题。
教师指导与教学过程
学生学习活动过程
设计意图
一,复习整数乘法的意义
1.什么叫整数乘法?就是求几个相同加数的和的简便运算。
2.出示题目,学生进行计算
(1)6+6+6=6×3
二、新授:
1、出示题卡
1个图案占一张彩纸的1/5,3个图案占这张彩纸的几分之几?
2、引导学生用涂一涂加法计算,乘法计算三种分式来解决问题。
学生回忆整数乘法,并回答什么叫整数乘法。
1、学生仔细阅读题卡,理解题意否,列式计算。
2、学生交流各自计算的方法。
3、全班进行交流。
++==
3×=++==
通过复习整数乘法的意义,过渡到分数乘法的意义,学习易于理解。
在交流各自的语言地理学的过程中,让学生体会分数乘整数的.意义与整数乘法的意义是相同的,即求几个相同加数的和的简便运算。
教师指导与教学过程
学生学习活动过程
设计意图
三、涂一涂,算一算
(1)2个3/7的和是多少?
(2)3个5/16的和是多少?
四、练习巩固
1、5个3/8是多少?
2、4个2/17是多少?
3、6个3/25是多少?
学生打开教科书,选涂一涂,再列式计算。
学生审题后,涂一涂,再列式计算。
×2=
全班交流
5/16×3=5×3/16
=15/16
学生独立完成在作业本上
帮助学生进一步体会分数乘整数的定义,同时还可以帮助学生寸步体会“分数乘整数,分子和整数相乘,分母不变”的道理。
五年级数学教案7
教学目标:
1.掌握小数加减法的计算方法,并能用于解决生活中的一些实际问题。
2.通过自主探究、合作交流,经历探索小数加减法计算方法的全过程,理解算理,体会小数加减法与整数加减法的联系,发展运算、分析、推理能力,积累解决问题的经验。
3.加强数学知识与日常生活的联系,激发学习兴趣,培养与他人合作的意识,逐步养成独立思考、细心计算的良好习惯。
教学重点:
掌握小数加减法的计算方法。
教学难点:
理解相同数位上的数才能直接相加减的算理。
本节课关键性问题:
1、如何引导学生发现只有相同数位上的数才能直接相加的原因。
2、如何引导学生将小数加减法与整数加减法进行联系沟通。
教学准备:
课件、学习单、实物投影
过程设计教学过程:
一.错题引入
师:同学们,知道我们今天学什么?(出示课题)
师:之前我们已经学习了简单的小数加减法,所以昨天我做了一次课前调查,这是同学们列的两道竖式:
师:你认为哪道是对的?
师追问:为什么这个2不与5相加,而要与6相加呢?
设计意图:从学生的错例引入,激发孩子的求知欲,为自主探究作好铺垫。
二.小组合作,自主探究只有相同数位上的数才能直接相加的原因。
【关键问题1】如何引导学生发现只有相同数位上的数才能直接相加的原因。
出示学习单
小组合作要求:
(1)组长合理分工,在最短时间内让组员将讨论结果内记录在学习单上。
(2)小组汇报时按顺序依次发言。
(3)其他组员可以进行补充和评价。
(预设生):百分位与百分位加,十分位与十分位加,个位与个位加。
(预设生):用计数器来表示算法的。
(预设生):2个一加3个一,6个0.1加2个0.1,5个0.01加0个0.01。
(预设生):用格子图来解释。
师:现在你知道为什么这个2不与这个5相加,而要与6相加了吗?
(预设生):2表示2个0.1,5表示5个0.01.(同时板书)他们的计数单位不同,不能直接相加。
师追问:现在你们知道为什么这个2不与5相加,而要与6相加吗?
小结:是的,只有相同数位的数才能相加,也就是计算小数加法的时候我们要做到相同数位对齐。(板书)
练习:判断一下下面哪道竖式是正确的?
师:你怎么这么快就判断出来啊!
(预设生):看看小数点对齐了没有。
小结:在计算小数加法时要把相同数位对齐只要把小数点对齐就可以了。
师:那么以后再算小数加法时我们要做到什么?
(预设生):计算小数加法时,小数点对齐,相同数位对齐,从低位算起。
设计意图:通过小组合作,生生交流,自主发现相同数位上的数才能直接相加,体验自主探究学习的快乐。
与整数加法进行比较
1.【关键问题2】如何引导学生将小数加减法与整数加减法进行联系沟通。
师:相同数位对齐你有没有觉得很熟悉?在哪里听过。
出示课件
小结:在做整数加减法的时候就是要把相同数位对齐才能相加减。原来小数加减法与整数的计算方法是一样的。
2.回到课前调查引出小数减法
师:看来同学们,小数加法的问题已经解决了,请再来看看课前调查中的'那一道算式:
师:现在你知道哪道是正确的吗?为什么?
师:百分位上没有数怎么减?
师:计算小数减法时有什么好窍门?
小结:所以以后在计算小数加减法时相同数位对齐了,就与整数加减法的运算规则是一样的。
设计意图:通过对比整数加法的计算方法,把旧的知识经验迁移到小数加减法上,让学生独立解决小数减法的计算问题。
练习巩固
1.校对时借助课件用计数器演示退位过程。
设计意图:借助开小卡车,调节学习氛围,同时让学生巩固小数点对齐的重要性,通过演示计数器让学生形象地感知退位过程。
2.你觉得生活中有没有用到小数加减的地方?
师:这是小马虎的妈妈去超市购物的清单,可是清单的右下角被油渍弄脏了看不清了,你们能帮忙算一算吗?先估一估大约是几元?
设计意图:通过解决生活中的小数加减法问题,能让学生体会到学习计算的必要性,体会加减计算与生活的密切联系。
3.在方框上填上运算符号,然后添上小数点,使竖式成立。
设计意图:进一步让学生感知小数点对齐的本质就是让相同数位上的数相加减。
三、课堂总结
谈谈你的收获?
五年级数学教案8
教学目标
1、知识目标:通过教学,使学生初步理解同分母分数加减的算理,掌握同分母分数加减法的计算法则并能正确熟练地计算。
2、能力目标:在具体情景中对整数加减法的意义进行迁移,进一步理解分数加减法的意义,提高学生归纳、概括问题的能力。
3、情感目标:通过学生的自主探索和合作交流,培养合作意识,让学生体验成功。
4、重点能正确进行同分母分数加、法计算。
5、难点能熟练掌握并养成最后计算结果能约分的要约分的习惯。
教学过程
创境激疑一、复习铺垫,引出新知:
1、师:同学们,前面我们刚刚学过有关分数的知识,你能举了分数的例子吗?(学生举例。)
师板书两个分数:看着这两个分数,你能想到哪些有关的分数知识?(学生回答。)
2、师:同学们复习的很全面,咱们再具体做个练习好吗?
合作探究二、新课讲授,总结规律:
1、学习例题1:
师:刚才的复习告诉我,大家对分数知识掌握的很好。还记得在三年级的时候,我们对分数的'计算已经有了初步的了解,今天我们继续学习“同分母的分数加减法”。教师板书课题。
A、创设情境,出示题目:
B、出示例题1
师:请说出图上有什么信息?
(1)学生分析读题,列式,师:为什么用加法计算?小数加法和整数加法的含义
(2)你能大胆的猜测一下计算结果吗?学生说出得数。
请用自己喜欢的方法来证明得数是正确的。同桌或小组内的同学交流自己的方法。
(3)方法展示:
图示法、线段法、数分数单位法。
2、学习例题2
师:刚刚学习了同分母的加法,接下来我们继续研究同分母的减法。
A、教师板书两个分数、
(1)师:你能用这两个分数编一道减法应用题吗?学生思考并回答。
(2)师:老师也用这两个分数编了一道减法应用题,想看吗?
B、出示例题2:为什么用减法呢?小数减法的含义和整数减法的含义。
请仿照例题1的计算方法计算得数。
出示例3、电视台少儿频道各类节目播出时间分配情况如下:
节目类型动画类游戏类教育类科普类其它。
时间分配
(1)前三类节目共占每天节目播出时间的几分之几?
(2)其它节目占每天播出时间的几分之几?
学生自己独立解答。
拓展应用做一做1题
总结这节课我们主要学习了什么内容?你能用一句话来概括他的计算法则吗?
五年级数学教案9
教学目标
1、通过教学,使学生初步理解同分母分数加法的算理。
2、掌握同分母分数加法的计算法则并能正确熟练地计算。
学情分析
学生在掌握整数加法的基础上,探索同分母分数加法的过程,理解同分母分数的计算法则。
重点难点
1、分数加法的意义。
2、能正确进行同分母分数加法的计算。
教学过程
活动1【导入】创设情境
1、(录音内容)我是妮妮,今天想请哥哥、姐姐帮我一个忙。我妈妈烙了一张饼,爸爸把它平均分成八份,爸爸吃了八分之三张饼,妈妈吃了八分之一张饼,我想知道爸爸、妈妈一共吃了多少张饼呢?谁要是能帮我,就奖给大家一个赞,我先谢谢哥哥、姐姐了。
2、师:同学们,能帮助小妹妹吗?那怎么列式(板书式子),今天就让我们共同学习同分母分数加法。
活动2【讲授】学习目标
1、理解、掌握同分母分数加法的计算法则。
2、能正确进行同分母分数加法的计算。
活动3【活动】提示预习内容,学生自主学习
1、自主探究、小组讨论:
(一)师:俗话说:“三个臭皮匠,顶个诸葛亮”,四个人的智慧,一定是很大的,下面就让我们小组合作来探究同分母分数加法。
(二)学生先自主学习,再小组讨论
(三)学生讨论,师个别指导
(讨论中鼓励学生大胆提出个人见解,提示可以借助辅助工具来解题。)
2、汇报交流
生1:同学们,下面由我来代表我们组跟大家分享我们组的做法,大家请看,我是把这张长方形纸当成妈妈烙的饼,我也把它平均分成8份,爸爸吃了3份,我把它折回去,妈妈吃了1份,我也把它折回去,还剩4份,吃了也就是4份,占整张饼的八分之四,结果能约分的要约成最简分数,也就是二分之一。
生:老师,我想对赵红俐的讲解做下点评,你的想法真奇特,能想到加法的逆运算减法来解决问题,你真棒,希望在以后的学习中你能继续发挥你的聪明才智。
生2:大家请看,我们组是用折纸法,我把这张圆看作是妈妈烙的饼,我把它对折三次,平均分成8块,这3块是爸爸吃的,也就是八分之三,这1块是妈妈吃的也就是八分之一,一共吃了4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。
生3:我来为大家讲解说意义的方法,大家请看,我是把这张饼看作单位“1”,把它平均分成8块,爸爸吃了3块,相当于吃了这张饼的八分之三,妈妈吃了1块,相当于吃了这张饼的八分之一,两个人共吃了4块,也就是这张饼的八分之四。结果能约分的要约成最简分数,也就是二分之一。
生4:我们组是用画线段的'方法来解答的,我是把一条8厘米长的线段看成是妈妈烙的饼,把它平均分成8份,这3份是爸爸吃的,用来表示八分之三,这1份是妈妈吃的,用来表示八分之一,一共吃了4份,也就是八分之四,请大家注意结果能约分的要约成最简分数,也就是二分之一。
生5:我们组是用画图法来解决的,我是把一张正方形纸看作是妈妈烙的那张饼,把它平均分成8块,爸爸吃的3块,我是用蓝色表示的,妈妈吃的1块,我是用红色表示的,爸爸、妈妈一共吃了4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。
生6:我们组是用切割法来解决的,请八位同学来帮我完成,请大家手拉手紧密的围成一个圆,我把这个圆平均切成8块,这3块是爸爸吃的,这1块是妈妈吃的,一共是4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。
生:我想对陶梦如的做法做一下点评,你的想法很新颖,但在日常的应用中不实用,我建议你可以用小棒来代替人。
生:我觉得小棒易丢,也不实用,可以用手指来代替小棒,因为手指不会离开我们的身体。
生:我觉得手指算小数可以,假如就没法算了,我觉得还是画图比较好。
生7:大家请看表示3个,表示1个,它们两的分数单位都是,所以分母不变,只把分子相加,结果能约分的要约成最简分数,也就是二分之一。
生:刚才大家用这么多方法来探究同分母分数加法,那到底该怎样计算同分母分数呢?
生:同分母分数相加,分母不变,只把分子相加,计算的结果,能约分的要约成最简分数。
师:同桌互记计算法则。
活动4【练习】能力提升
师:在阿拉伯流传这样一句话:“无论你有多少知识,假如不用便是一无所知”,谁能结合本节课的内容,出几道题考考大家?
五年级数学教案10
教学内容:
P81—85,例1、例2和练习十四
教学目标:
⒈使学生知道常用的土地面积单位公顷、平方千米;通过观察、计算、推理和想象等活动,体会1公顷的实际大小,发现平方米、公顷和平方千米之间的进率,会进行简单的单位间的换算。
⒉使学生能借助计算器,结合平面图形面积公式和有关面积单位换算的知识,估计或计算相关的土地面积。
⒊使学生积极参与学习活动,体会数学与生活的联系,培养与他人合作的意识和能力。
教学重点、难点:
⒈知道常用的土地面积单位公顷、平方千米;
⒉进行简单的单位间的换算及计算相关的土地面积
教学课时:2课时
(1)公顷的认识
教学内容:
p.81、82的例1,试一试,练一练,练习十四第1~4题
教学目标:
1、知道常用的土地面积单位公顷,通过实际观察和推算,体会1公顷的实际大小;知道1公顷=10000平方米,会进行简单的单位换算。
2、能借助计算器,应用平面图形的面积计算公式和有关面积单位换算的知识解决一些简单的实际问题。
3、通过积极参与观察、推算、分析的过程,培养学生主动参与数学活动的意识,提高与同伴合作交流的能力,在学习中获得快乐的情感体验。
教学重点、难点:
建立1公顷有多大的空间观念,公顷与平方米之间简单的单位换算。
教学过程:
一、复习面积单位:
1、板书“面积”,问:面积指的是什么?
(物体表面的大小或图形的大小。)
面积与周长有什么不同?(面积是指的“面”的大小,周长指的是边的长短。)
分别举例:书封面的面积和黑板面的面积。
2、指出:面积有大有小,所以需要不同的面积单位。已学过的面积单位(从大到小):平方米、平方分米、平方厘米
问:1平方米是多大?(要求学生分别从两方面考虑:边长是1米的正方形面积就是1平方米;教室地面上的.大方块约是1平方米)
继续同法复习1平方分米、1平方厘米
复习进率:100
3、估一估:教室地面面积大约是多少平方米?
一坨一坨地量,估得长约8米,宽约6米
算一算:8×6≈50平方米
(提醒:结果要合乎实际,还要方便计算。)
二、认识公顷:
1、通过预习,大家已经知道今天要学新的面积单位:公顷
说说你知道1公顷有多大?
(边长是100米的正方形面积;10000平方米)
根据第一句话算一算:100×100=10000平方米
提醒:以前学习的三个面积单位进率是100,现在新学的公顷和平方米的进率是10000;公顷可以用字母“ha”表示
2、猜一猜:我们的操场面积有1公顷么?为什么?
(操场的长100米多一点,宽大约只有50米,100×50=5000平方米,大约是半公顷。)
板书调查的操场面积:4575平方米
4575平方米=( )公顷
你是怎么想的?(小数点向左移动4位)
继续猜:整个学校的占地满1公顷么?你是怎么想的?
(只要学生说出的想法合理就行。)
满2公顷么?为什么?
板书调查好的数据:13970平方米
问:13970平方米=( )公顷
你是怎么想的?
3、说说你对公顷的认识。(是一个很大的面积单位)
我们学校的面积只有1公顷多一点,如果用平方米做单位,很精确,但数较大,不方便。所以在描述一些地方的时候可以用公顷为单位,这样更清楚。
4、读例1的4张图。
也可请知道有关情况的同学坐一些简单的介绍。
5、读书:边长100米的正方形土地,面积是1公顷
你有什么发现?(以前的面积没专指“土地”,为什么这里要强调“土地”呢?)说明公顷是个大单位,除了土地之外,没有什么东西的面积可以用它作单位。
三、巩固练习:
1、试一试,读题后学生列式计算。指导学生用简便方法计算。
2、练一练,(1)算出足球场的面积,指导乘11的简便算法;指导规范的答题格式。
(2)用刚才算的“50平方米”,算一算,大约多少个这样的教室地面的面积是1公顷。注意“0”的个数。
3、练习十四。(1)读题后了解这两个信息,并换算。指出:在整数范围里,平方米换算成公顷就是去掉末尾的4个0,公顷换算成平方米的时候只要在末尾加上4个0;注意进率是10000。
(2)学生独立填写,指名交流。
(3)作业:第3、4题
强调几个面积公式:长方形、正方形、平行四边形、梯形、三角形
4、讲评预习作业。
(2)平方千米的认识
教学内容:
p.82、83的例2,试一试,练一练,练习十四第5~7题
教学目标:
1、知道常用的土地面积单位平方千米;通过猜想和推算,知道1平方千米=1000000平方米=100公顷,会进行简单的单位换算。
2、能借助计算器,应用平面图形的面积计算公式和有关面积单位换算的知识解决一些简单的实际问题。
3、在学习活动中进一步体会数学与生活的联系,培养相互合作的能力,在学习中获得快乐的情感体验
教学重点难点:
认识1平方千米;发现平方千米与平方米、公顷之间的进率,会进行简单的单位换算
教学过程:
一、复习:
说说已经学过的几个面积单位,注意从大到小地说。老师板书成:
公顷(红笔写)、平方米、平方分米、平方厘米
问:公顷很特别,说说它有哪些特别之处?
(其它的面积单位都有“平方”两字,它没有;公顷是其中最大的面积单位,用于土地面积;其它的面积单位进率都是100,而它和平方米之间的进率是10000……)
说说1公顷指的是多大的面积?(要学生熟练地说出:边长100米的正方形土地面积。)
二、学习新知:
1、这节课我们要学习一个更大的面积单位,是什么?
板书:平方千米
知道1平方千米是多大么?
(边长是1千米的正方形土地面积)
回忆“1千米”的长度:选两个熟悉的相距1千米的地方,体会相距1千米是较远的距离。
算一算:1000×1000=1000000平方米=100公顷
联系实际想一想它的实际大小:
约200个操场的面积大小……
体会:平方千米是一个最大的面积单位,它一般用于一个城市、省、国家等很大的面积。
2、学习例2:
读书上的例2,了解“平方千米”所用的地方。
3、补充:
中国的国土面积大约是960万平方千米,这个面积包括了领土、内海、领海等。
我们太仓的面积:800.906平方千米,其中陆地面积538.466平方千米,我们城厢镇面积:185.01平方千米
指出:我们太仓是一个县级市,面积大约有近千平方千米。
4、完整的面积单位进率:
平方千米、公顷、平方米、平方分米、平方厘米
只有公顷和平方米之间的进率是10000,其他的相邻面积单位间的进率都是100
三、巩固练习:
1、试一试:学生独立列式解答,注意书写格式、进率换算。
2、练一练:
(1)算一算,注意末尾0的个数。再换算。
(2)单位换算,指名说说换算的方法,比较圆明园的面积大小。
(3)学生独立完成,并交流换算方法。
3、练习十四的部分练习:
(1)以江苏省地图为参照,估一估其他各省的面积。如可以先从山西省地图中描画出和江苏省差不多大的部分,再估计剩余部分的面积。估计完后,老师报出确切的数据,检验学生的估算能力。
山西省15.63万平方千米,湖南省21.18万平方千米,云南省39.4万平方千米,海南省3.4万平方千米
(2)边说边比画出1平方厘米、1平方分米、1平方米,1公顷、1平方千米
说进率:100平方厘米=1平方分米,100平方分米=1平方米
10000平方米=1公顷,100公顷=1平方千米
(3)在括号里填上合适的面积单位:
计算机屏幕:问“为什么不是780平方分米?”
计算机房:一般房间的面积用“平方米”
香港面积:太仓的面积有800多平方千米,香港比太仓大,应该也是“平方千米”;一个城市、甚至更大的地方面积都要用“平方千米”。
机场跑道:20公顷
4、你知道吗?
学生读一读,了解基本情况。
估一估哪个洲面积最大?然后老师从大到小依次报出各面积,学生记录。
四、布置作业
五年级数学教案11
教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的。
教学重点 掌握求两个数的的方法。
教学难点 正确、熟练地求出特殊情况下两个数的。
教学过程
一、创设情境
1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。
2.回答问题:什么是公倍数?什么是是?
3.求24和32的。
4.说说下面每组中的两个数有什么关系?
12和36 4和5
二、揭示课题
我们已经学会求两个数的,这节课我们将继续学习求特殊情况下两个数的。(板书课题:求特殊情况下两个数的)
三、探索研究
1.教学例3
(1)先让学生用上节课学的方法分别求出这两组数的。
(2)观察结果:通过这两组数的,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材第73页的结论。
(4)尝试练习。
做教材第74页下面的做一做,先让学生判断每组中两个数的关系,再解答出来集体订正。
四、课堂实践
1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。
2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的,并订正。
3、做练习十五的第9题。先让学生独立判断,对的打,错的打,再点几名学生讲打或的理由。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
做练习十五的第8题。
课题三:求三个数的
教学要求 使学生在理解的基础上学会求三个数的。
教学重点 求三个数的与求两个数的的区别。
教学难点 会求三个数的。
教学过程
一、创设情境
求下面各组数的。(学生做完后,集体订正时,点几名学生说怎样求两个数的)
5和8 7和28 12和16
二、揭示课题
我们已经学会求两个数的,怎样求三个数的呢?现在我们一起来学习。(板书课题:求三个数的)
三、探索研究
1.教学例4。
(1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)
8=222
12=223
30=2 35
(2)分组讨论。
①8、12、30的必须包含哪些质因数?
②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5 ,(22235)这些质因数是否包含了8、12和30所有的质因数?
③8、12和30的是多少?
(3)归纳:8、12和30的,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(22235=120)就是8、12和30的`。
(4)求三个数的的方法。
求三个数的与求两个数的的方法大同小异。(板书短除式)
8 12 30
①先用什么数作除数去除?
②再用什么数作除数去除?(重点指导:另一个数要移下来)
③一直除到什么时候为止?
④最后怎样做就可以求出三个数的?
(5)比较求三个数的与求两个数的有什么不同?(先可让学生说,然后老师归纳)
相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。
不同点:求两个数的时,除到两个商是互质数这止;而求三个数的时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。
四、课堂实践
1.做教材第75页的做一做。
2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的质因数还没有找完。在用6除时把8移下来,就等于在里多取了一个质因数2。
3.做练习十五的第13题,学生口答。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
1.做练习十五的第10、11、14题。
2.有兴趣、有余力的学生可做练习十五的第21*~23*题。
课题四:最大公约数和的比较
教学要求 通过比较,使学生进一步分清求最大公约数和的相同点和不同点,并能正确地求出几个数的最大公约数和。
教学重点 比较求两个数的最大公约数和的不同点。
教学用具 在投影片上画好教材第80页的表格(留空备用)
教学过程
一、创设情境
1.做练习十六的第1题,先让学生将能被2整除的数用△圈起来;能被3整除的数用○圈起来;能被5整除的数用□圈起来,做在书上,集体订正。
2.很快说下面每组数的。
5和7 9和45 9和12 2、3和11 8、10和40 3、4和6
二、探索研究
1.教学例5。
(1)出示例5(点2名学生在黑板上做,其余的学生做在练习本上):
28 42 28 42
7 14 6 7 14 6
2 3 2 3
28和42的最大公约数是: 42和28的是:
27=14 2723=84
(2)揭示课题:我们现在来比较一下,求两个数的最大公约数和的方法有什么相同点和不同点。(板书课题:最大公约数和的比较)
(3)出示留空的表格。
先让同桌的学生互相说说,再点几名学生谈自己的看法,最后归纳填表。
(4)看表上的不同点回答。
为什么它们在计算时不相同?
使学生明确:①因为两个数最大公约数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公约数。②而两个数的不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的。
(5)尝试练习。
做教材第80页的做一做,然后点几名学生说一说是怎样做的。
三、课堂实践
做练习十六的第2题。
四、课堂小结
学生小结求两个数的最大公约数和的异同点。
五、课堂作业 。做练习十六的3、4、5、6*题。
五年级数学教案12
教学目标
1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。
2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。
3.进一步提高学生的统计技能,增强学生的统计意识。
教学重难点
教学重点:认识众数,理解众数的意义及作用。
教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。
教学过程
(一)复习旧知
1、回忆平均数及中位数的求法,指生回答。
2、求下列这组数据的平均数和中位数。生独立完成后课件出示。
(二)完成例1
1.出示例题:
五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)
1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52
师:提出集体舞的要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?
2.学生小组合作选择10名队员。
3.根据学生汇报,师课件随机演示选择结果。
平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47
+1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52
+1.52+1.52+1.52+1.52)÷20
=29.5÷20
=1.475
中位数=(1.48+1.49)÷2
=2.97÷2
=1.485
接近1.485m的同学人数太少,不适合大多数同学的
身高。最高的与最矮的相差6cm。
这组数据的中位数是1.485,身高接近1.485m的比较合适。
身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。
1 . 52出现的次数最多,最能应这组同学的身高情况.
4.小结:以众数1.52为标准选择队员身高会比较均匀。
师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!
5.师生共同归纳众数概念。
师揭示众数的概念
一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。
6、做一做,
7、小练习:
学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:
求这次英语百词听写竞赛中学生得分的众数.
三个数据存在的数量和意义:
比较三个统计量:
(三)学习众数的特征
师出示练习题:
1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):
19 23 26 29 28 32 34 35 41 33 31
25 27 31 36 37 24 31 29 26 30
(1)这组数据的中位数和众数各是多少?
(2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?
2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:
甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5
乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9
(1)甲、乙成绩的平均数、众数分别是多少?
(2)你认为谁去参加比赛更合适?为什么?
生先独立思考,再全班交流。
师:在找三组数据的众数的过程中,你发现了什么?
生:在一组数据中,众数可能不止一个,也可能没有众数。
师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的'集中情况。
2、三个数据存在的数量和意义
(四)综合练习
你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。
(五)联系情境,应用众数
销售衣服问题。
师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41
师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?
生:讨论交流,发表自己想法。
师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!
(五)拓展延伸(“生活中的数学”)均码问题。
师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。
师:课后请同学们调查和了解一下:什么是“均码”?
(六)全课小结
教师:同学们,今天我们上了这节课你收获了什么?
五年级数学教案13
教学内容:教科书第53页第10~13题
教学目的:
1、用分数的有关知识,熟练地解决求一个数是另一个数的几分之几的实际问题,
2、能沟通知识之间的相互联系,提高解决问题的'能力。
教学过程:
一、练习与应用
1、第52页第10题
先做第一题:五一班一共有学生40人,其中女生有21人。女生占全班人数的几分之几?
(1)先让学生联系分数的意义口头分析:把全班人数看作单位”1“,平均分成40份,女生人数占了其中的21份,所以女生人数占全班人数的21/40。
(2)再让学生根据分数与除法的关系列出算式,并写出得数。
(3)独立做下面两题
(4)交流
2、做第11题
(1)学生先独立练习
(2)引导比较A三道题目计算方法有什么相同?
B算式中选择的除数有什么不同?
C从中还能想到些什么?
(3)沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。
3、做第12题练习后加强对比
(1)计算方法有什么相同的地方?
(2)算式中选择的被除数为什么不同?除数为什么相同?
(3)商的表示方法有什么不同?
4、做第13题练习后加强对比
要引导学生区别清楚:一:第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位”1“,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二:第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称”米“。
5、思考题
方法一:可以根据每个分数中分子与分母的大小关系来判断。
方法二:通过画图帮助思考
二、课堂
三、完成补充习题上的练习。
五年级数学教案14
一、导引目标,激发兴趣
师:在现实生活中,许多小数并不一定都要知道它们的准确数,而只需要知道它们的近似数就可以了。同样,在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,只要根据需要求出积的近似数就可以了。今天,我们一起来学习求积的近似数。(板书课题:积的近似数)
二、创设条件,主体参与
1 、创设情境
投影课本例6主题图,教师讲述故事
2 、问题质疑。
师:同学们,为什么警犬能很快帮助警察抓获犯罪嫌疑人?你们知道吗?谁来说一说。
预设:因为狗的嗅觉很灵敏,狗的嗅觉细胞数量比人多得多,狗能利用它十分灵敏的嗅觉闻出坏蛋身上的气味。
师:在现实生活中,动物是人类的好朋友,我们要保护动物,保护动物生存的环境。
3、教学例6。
(1)呈现信息:人的嗅觉细胞约有0、049亿个,狗的嗅觉细胞个数是人的45倍,狗的嗅觉细胞约有多少亿个?(得数保留一位小数。)根据已知条件与所求问题你认为应该怎样列式呢?并说明理由。
(2)教师板书:0、049×45
(3)学生独立完成求积的近似数。
(4)与你的同桌交流你所求得的结果,互相检验。指名学生板书计算过程,由其讲解保留近似数的依据。
全体学生对他的板演过程和解释作出评价。
(5)反馈、评价。引导学生反馈、评价自己的计算过程、结果是否正确,更正自己做错的地方。
(6)师小结:求2、205这个积保留一位小数的近似数,要看小数点后第二位,因为积的十分位上的数是0,0<5,所以要舍去小数部分的0和5,积的近似数约是2、2。由于求得的结果是近似数,所以在横式中要用约等号“≈”。
(7)这里追问如果要求得数保留两位小数,应该是多少呢?并说明理由。
(8)独立完成10页做一做。
(设计意图:通过引导质疑,引出人和狗的'嗅觉细胞的有关信息,让学生提出问题、列式计算,自主探索求积的近似数的方法。通过交流研讨、反馈、评价、更正错误,提升学生的认知能力。同时渗透人类与动物和谐相处的思想教育。)
三、组织研究,体验发现
师:同学们,有些应用问题取近似数时,还要联系实际想一想。下面这道题的答案没有要求保留几位小数,应保留几位小数才合理呢?
出示:小丽家上个月的用水量是16、85吨,每吨水的价格是2、5元。小丽家上个月应付水费多少元?
(1)学生独立列式计算。16、85×2、5=42、125≈42、13(元)
(2)讨论交流:这道题为什么要保留两位小数?
(3)预设:由于是计算钱数,人民币最小的单位是分,应精确到分(百分位),所以将计算结果保留两位小数是合理的。根据“四舍五入”法把百分位后面的数省略,千分位上的数是5,向百分位进1,得到近似数42、13。
数学源于生活,服务于生活。在解决实际问题时我们要注意数学的灵活性。下面我们来交流提纲中的第三个问题:你认为在求积的近似数时需要注意什么?
(设计意图:增强学生应用数学的自觉性,通过总结求积的近似数的方法,促进学生思维的内化,提升迁移、类推能力。)
四、精讲释疑,应用实践
1 、选一选
2、判一判
下面的计算对吗?把错误的改正过来。
(1)9、1×0、5=4、6(得数保留一位小数)
(2)2、34×0、15≈0、36(得数保留两位小数)
先让学生算一算,再判断计算是否正确,然后把错误的改正过来。
3、想一想
4、解决问题我最棒
学生独立完成列式计算,教师巡视,进行个别辅导,集体订正。
(设计意图:本环节设计了选择、判断、改错、解决问题等练习,旨在巩固所学知识,形成技能,发展智力。通过练习,不仅可以加深学生对求积的近似数方法的理解和掌握,还能促进学生思维的发展,提高解决问题的能力。)
五、反思小结,巩固提高
我们的身边处处有数学,相信聪明的你们通过今天的学习一定是受益匪浅的,下面和同学们共同交流一下你的学习收获吧!
作业设计:
13页2、3题。
板书设计:
积的近似数
例6、 0、049×45≈2、2(亿个)
生板书计算过程
答:狗约有2、2亿个嗅觉细胞。
五年级数学教案15
教学目标
1.掌握用含有字母的式子表示一些常见的数量关系.
2.知道利用最基本的数量关系求出其中任意一个未知量.
3.能根据关系式计算.
教学重点
使学生会用字母表示常见的数量关系.
教学难点
会利用数量关系式求出其中一个未知量.
教学过程
一、复习准备
(一)用字母表示
1.加法交换律_______,乘法交换律_______.
2. 简写为_______, 简写为_______或_______.
(二)复习常见的数量关系
二、新授教学
(一)
1.教师介绍:我们已经学过一些常见的数量关系,这些数量关系同样可以用含有字母的式子来表示.
2.举例说明
例如:路程=速度时间
用字母 表示路程, 表示速度, 表示时间
公式: =
3.变式练习
(1)已知某一物体运动的路程和时间,怎样求它的运动速度?
(2)已知某一物体运动的路程和速度,怎样求它的时间?
(二)教学例2
例2.一列火车每小时行60千米,从甲站到乙站行了4.5小时.甲乙两站之间的铁路长多少千米?
1.教师说明:利用数量关系式,只要知道某一物体运动的'速度和时间,把它们代入上面的公式,就可以求出所行的路程.
2.学生分组讨论
(1)已知条件和所求问题是什么?
(2)本题的数量系是什么?
(3)怎样用字母表示?
3.尝试解答
=_______________
=_________
答:甲乙两站之间的铁路长_______千米.
(三)巩固练习
1.收入、支出和结余的关系可以写成下面的公式:结余=收入-支出用a表示收入,b表示支出,c表示结余,写出这个公式.
2.一个学校食堂上个月收入伙食费3475元.各项支出一共是3058.73元.这个食堂上个月结余多少元?(把数值代入上面用字母表示的公式计算)
(四)归纳总结
1.理解题意,找到数量关系.
2.式.
3.代入数值计算.
4.写出答案.
三、课堂小结
本节课你学习了什么知识?
四、巩固反馈
(一)填空
1.已知物体运动的速度和路程,那么时间=_______,用 和 表示速度和路程, 表示时间, =_______
2.已知商品的单价用 表示,总价用 表示,数量用 表示,那么 =_______, _______, _______.
五、课后作业
(一)1.如果用a表示工作效率,t表示工作时间,c表示工作总量,写出求工作总量的公式.
2.一个工人每小时可以加工零件25个,利用上面的公式,算出这个工人8小时可以加工多少个零件?
(二)1.如果用b表示小麦单位面积产量,x表示面积数,s表示总产量,写出求总产量的公式.
2.根据上面的公式,分别写出求单位面积产量和面积的公式.
六、板书设计
例2.一列火车每小时行60千米,从甲站到乙站行了4.5小时.甲乙两站之间的铁路长多少千米?
路程=速度时间
=
=604.5
=270
答:甲、乙两站之间的铁路长270千米.
【五年级数学教案】相关文章:
五年级数学教案06-25
小学数学教案五年级11-18
五年级教案数学教案12-27
小学数学教案五年级11-04
五年级数学教案【荐】04-02
五年级上册数学教案03-26
五年级数学教案通分04-03
五年级数学教案:约分04-04
众数的五年级数学教案11-18