当前位置:好文网>实用文>教案>五年级数学教案

五年级数学教案

时间:2023-02-21 08:20:20 教案 我要投稿
  • 相关推荐

五年级数学教案合集15篇

  作为一名教学工作者,就不得不需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。如何把教案做到重点突出呢?下面是小编整理的五年级数学教案,希望对大家有所帮助。

五年级数学教案合集15篇

五年级数学教案1

  一、教学目标

  (一)知识与技能

  在长方体、正方体的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,加深对已学知识的理解和深化。

  (二)过程与方法

  经历探究测量不规则物体体积方法的过程,体验“等积变形”的转化过程。获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作的精神、创新精神和问题解决能力。

  (三)情感态度和价值观

  感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。

  二、教学重难点

  教学重点:在测量不规则物体体积的过程中感悟“转化”的数学思想。

  教学难点:综合运用所学知识测量不规则物体体积的活动经验和具体方法。

  三、教学准备

  量杯、水、梨、土豆、石块、橡皮泥、A4纸。

  四、教学过程:

  (一)谈话交流,导入新课

  教师:同学们,经过今天的学习,我们已经掌握了关于体积和容积的知识,你会求长方体和正方体的体积吗?如果要求一个长方体的体积,我们需要知道哪些信息?

  教师:(出示一张A4纸)严格来说,一张A4纸也是一个薄薄的长方体,那么你能求出它的体积吗?

  引导学生思考,悟出一张纸太薄了,可以用多些的纸来测量,再进一步感悟到用整十、整百张来测量更便于计算。

  板书:V1张=V100张÷100。

  设计意图通过测量A4纸的体积,即复习了长方体体积的计算方法,同时又有所超越,激发了学生探究的欲望,为后面测量不规则物体的体积埋下伏笔。

  (二)探究合作,测量体积

  1.明确任务,思考方案。

  教师:刚才我们是直接测量一张A4纸的体积吗?我们是把1张A4纸的体积转化为100张,然后再求出一张。这里同学们很聪明地利用了转化思想,从而想出了测量方法。规则物体的体积测量过了,那大屏幕上这些不规则物体的体积,你想测量吗?今天我们就来测量不规则物体的体积。(板书课题并出示课件)

  教师:不规则物体的体积你会测量吗?先互相说说打算怎么测量?(给时间让学生小组讨论测量方案。)

  设计意图在动手实验之前,给予学生思考的时间,能使学生明确实验的任务和养成先制定实验方案,再根据方案实验的科学态度。

  2.合作交流,汇报方案。

  学生1:橡皮泥容易变形,我们可以把橡皮泥压制成规则的长方体或者正方体,再测量长、宽、高从而计算出橡皮泥的体积。

  学生2:可以把梨放到装水的量杯里,水面上升部分水的体积就是梨的.体积。

  教师指出,这种方法可以称为“排水法”。

  设计意图在独立思考和小组交流的基础上,学生一定能够想到许多不同的方案,再通过这些方案的比较,使学生感受到哪些方案是可行的,从而培养学生自主探究的能力和学习数学的热情。

  3.小组合作,操作实践。

  (1)学生分组操作,并把测量数据填写在记录单里。

  (2)请小组代表上台重点介绍排水法测量梨的体积,一个同学汇报,组内同伴演示实验过程。

  (3)教师适时板书:V物体=V上升部分。

  教师:想一想,遇到下面这两种情况,你还能计算出这些不规则物体的体积吗?

  4.再次实验,深化认识。

  实验一:请同学将量杯里的土豆取出,观察量杯中的水位发生了什么变化?

  实验二:把一块石头放入装满水的量杯,杯中的水又有什么变化?

  教师根据学生的回答适时板书,完善结论。

  V物体=V下降部分;

  V物体=V溢出部分。

  教师:我们现在懂得了利用转化思想测量不规则物体的体积,谁来说一说,用排水法测量不规则物体的体积需要记录哪些数据?可以利用刚才的方法测出乒乓球和冰块的体积吗?为什么?

  设计意图教师利用学生实验过程中的亲身体验,引导学生感悟测量不规则物体体积时转化思想的应用,并且激发学生积极思考不同的转化方法,使学生对利用排水法测量不规则物体体积有一个丰富的体验和感受,让学生体会到“做中学”的乐趣。

五年级数学教案2

  教学目标:

  使学生了解"分数"产生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.

  教学重点:

  使学生理解"分数"的意义,弄清分母,分子及分数单位的含义.

  教学难点:

  使学生理解"分数"的意义,弄清分数单位的含义.

  教学课型:

  新授课

  教具准备:

  课件

  教学过程:

  创设情景,温故引新

  1,提问:

  A,大家知道分数吗 谁能说一个分数

  B,你能举个实例说说这个分数的意义吗

  2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.

  3,揭示课题:分数的意义

  二,联系实际,探究新知

  自主学习,整体感知分数的知识.

  (1)相互交流:① 关于分数我已经知道了什么 请把已知道的讲给同学们听.

  (2)自学理解:① 关于分数,自学后我又知道了些什么

  ② 我还有什么不明白的地方呢

  ③ 关于分数我还想知道什么

  2,探究深化,进一步理解分数的意义.

  (1)用分数表示下面各图中的阴影部分.[课件1]

  (2)填空.[课件2]

  ① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( ).

  ② 把一块饼平均分成2份,每份是它的( )/( ).

  ③ 把一个正方形平均分成4份.1份是它的( )/( );3份是它的( )/( )

  (3)用一张长方形的纸,折出它的1/4,并涂上阴影.

  用一张正方形的纸,折出它的3/8,并涂上阴影.

  (4)抢答. [课件3]

  ① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( ).为什么是1/2 若平均分给5位;10位;50位同学呢

  ④ 如果这个文具盒里只有6枝铅笔.现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗谁来说说这里的1/2所表示的意义

  ⑤ 如果把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义如果是100;1000枝呢

  (5)说说下列分数所表示的意义.[课件4]

  5/7 3/8 3/( ) ( )/9 ( )/( )

  3,小结.

  我们可以把许多物体看作一个整体,比如:一堆苹果,一批玩具,一班学生,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我把它叫做单位 "1".

  板书: 一个物体

  单位"1" 一个计量单位

  许多物体组成的.一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.

  三,加强练习,深化概念

  比赛:请两位同学站起来.

  提问:A,这两位同学是这组人数的几分之几

  B,这两位同学是两组人数的------- 这两位同学是全班人数的-------

  四,家作

  1,P88 .1,2

  2,P89 .3

  板书设计:

  分数的意义

  一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数

五年级数学教案3

  教学目标:使学生理解和掌握真分数,假分数的意义和特征,学会把假分数化成整数。

  教学重点:真分数和假分数的特征。

  教学难点:等于1的假分数。

  教学课型:新授课

  教具准备:课件

  教学过程:

  一,激发兴趣,引出概念

  1,真分数和假分数的意义及特征

  (1)观察比较下列每个分数中分子,分母的大小,并试着按一定的原则把这些分数分组。[课件1]

  1/33/33/41/55/62/53/5

  4/55/57/49/510/511/515/5

  ①板述:分子比分母小的分数叫做真分数。

  分子比分母大或者分子和分母相等的分数,叫做假分数。

  ※请说出3个真分数,3个假分数。

  ②观察比较:A,说一说第二组中的两个分数的意义这样的'分数等于多少

  B,再请观察第一,三组的分数的分子与分母的大小关系,分数值

  与1的关系,你发现有没有规律

  板书:真分数小于1;假分数等于或大于1。

  (2)在下面的线段图上,哪一段上的点表示的是真分数哪一段上的点表示的是假分数[课件2]

  (3)揭示课题:

  由图上可以清楚地看到,真分数,假分数实际上是以1为界,把分数分为了两类。所以这节课我们看上去研究的是分数的分子和分母的大小关系,而实质却是真分数和假分数。

  板书课题:真分数和假分数的意义及特征

  ※①下面分数中哪些是真分数哪些是假分数[课件3]

  1/33/35/31/66/67/613/6

  ②把上一题中的分数用直线上的点表示出来,看一看表示真分数的点和表示假分数的点,分别在直线的哪一段上。[课件4]

  2,把假分数化成整数。

  观察下列分数,它们有没有共同的特点[课件5]

  3/35/510/515/5

  提问:A,这些假分数还可以用什么数来表示

  B,我们可以用什么方法把它们化成整数这样计算的依据是什么

  (分子除以分母,分数与除法的关系。)

  (2)教学P99。例3:把3/3,8/4化成整数。

  板书:3/3=3÷3=1提问:A,3÷3表示什么

  8/4=8÷4=2B,8÷4表示什么

  c,说一说怎样把假分数化为整数

  (3)练习:把8/2,9/3,4/4,12/6化成整数。[课件6]

  二,巩固练习,提高能力

  1,说出四个分母是7的真分数。

  2,说出3个分数值是1的假分数。

  3,说出两个分母是9,分数值比1大又比2小的假分数。

  4,把下面这些分数化为整数。[课件7]

  24/425/572/454/6100/25

  5,判断正误,并说明理由。[课件8]

  (1)分母比分子大的分数是真分数。(2)假分数的分子比分母大。6,分数a/b中,当a,b分别是什么数时,它为真分数什么数时,它为假分数

  三,全课总结,抽象概括

  提问:怎样将真分数,假分数,假分数化整数

  四,家作

  P101。1,2,3

  板书设计:真分数和假分数的意义及特征

  分子比分母小的分数叫做真分数。例:1/2,3/5,11/12真分数<1

  分子比分母大或者分子和分母相等的分数,叫做假分数。例:5/3,8/8

  假分数≥1。

五年级数学教案4

  一、教学目标

  1、通过直观的折纸操作活动,理解异分母分数加减法的算理,能正确计算异分母分数的加减法

  2、引导学生利用学生自主折纸得到的算式,经历提出问题、自主探究、得出算法、解决问题的过程。从中渗透转化、建模等教学思想,提高学生解决问题的能力。

  3、通过折一折,画一画、说一说,算一算等活动激发学生学习数学的兴趣,并让学生在学习活动中获得积极的、成功的情感体验。

  二、教学重、难点

  1、重点:通过折纸探索并掌握异分母分数加减法的计算方法。

  2、难点:利用折一折,画一画、说一说,算一算等活动理解先通分,再加减的算理。

  三、教学设计

  (一)动手操作,明确目标

  1.谈话导入,开门见山板书课题:

  异分母分数加减法,出示学习目标,生齐读

  (1)探索并掌握异分母分数加减法的计算方法。能正确计算异分母分数的

  加减法。

  (2)通过直观的操作活动,理解异分母分数加减法的算理。

  师:听说咱们班的同学个个都是折纸高手,这节课老师就要和大家一起来通过折

  纸研究解决解决异分母分数加减法的相关知识,有信心吗?

  2.请看要求

  ①折一折:平均折出你喜欢的份数。②画一画:用斜线画上你想画的份数。③说一说:画斜线部分是正方形纸片的几分之几?

  3.动手操作

  师:老师已经给每位同学都准备了两张大小一样的.正方形纸张,请你拿出其中的一张按照要求动手操作。开始。(学生明确要求后,进行折纸、涂色、交流等活动,教师巡视指导。)

  4.学生汇报展示。

  师:谁能说一说自己是怎么折的,涂色部分是这张正方形纸片的几分之几?(学生汇报,老师将学生的折纸和涂色情况贴在黑板上并在纸旁板书相应的分数)

  5.提出问题,明确目标

  师:同学们,如果现在要把黑板上两张纸中的涂色部分加起来你可以列出哪些加法算式?(学生口述算式,教师分别将学生提出的算式书写在黑板上。)

  想一想你能把这些算式分成几类?你是根据什么分的?(同分母、异分母)(教师根据学生的回答,将黑板上的算式进行整理。)

  还记得如何计算同分母分数加减法吗?谁来说说?(齐读同分母分数加减数的计算方法。同时将同分母分数加法让学生进行练习,口算出每道题的结果。)

  师:从学生汇报的异分母加法算式中任意选择一道问:异分母分数如何加减呢?下面我们就来探索分母不同的分数相加减的计算方法。

  (二)自主探索,理解算理

  1、自主探索进行算理探究。

  师:出示生自编算式(1/2)+(1/4),请大家猜猜看,这道题的结果会是几呢?独立尝试,汇报各自的计算过程与结果。预设:可能出现的情况如下:

  结论1:(1/2+1/4=1/6)

  结论2:(二分之一加上四分之一等于四分之三)

  结论3:(二分之一加上四分之一等于六分之二)

  2、讨论验证

  师:为什么同样的算式,会出现不同的结果呢?到底谁对谁错呢?

  生:在全班范围内展开讨论,充分发表各自的意见。

  3、理解算理。

  师:刚才有人说结果是(---),有人说是(---),还有人说是0.75,到底谁对谁错呢?送给大家一句话“实践是检验真理的唯一标准”,请同学们用手中的纸折一折,一起来验证一下到底谁对谁错。开始。

  注意通过展示学生的折纸过程,引导学生观察算式()+()的通分过程,明确()+()=()=()是错误的,感受异分母分数加减法不能将分子分母直接相加减。

  师:在做异分母分数加减法,为什么不能直接将分子、分母直接相加或相减呢?

  出示小数加法算式“4.21+5.3”,提问:“可不可以将百分位上的1加上十分位上的3”感受为什么异分母分数加减法不能直接将分子、分母相加。

  师:可不可以将百分位上的1加上十分位上的3?

  生1:不可以。因为相同的数位没有对齐。

  生2:小数点没对齐。

  师:小数点没对齐也就是什么没对齐?——数位没对齐

  师:数位不同也就是什么不同?(计数单位)

  师:也就是说当单位不同时不能直接相加减。我们在来看这道分数题,他们的什么不同?(分母),分母不同,也就是??(分数单位不同),可以直接相加减吗?(生:不可以。)

  师:通过大家的交流,现在大家明白在做异分母分数加减时为什么不能直接将分子、分母相加、减的原因了吗?

  4、小结算理

  谁来说究竟该怎样计算异分母分数的加法呢?

  生汇报:先要通分,(也就是统一分数单位),把异分母的分数变成分母相同的分数,再计算,计算结果能约分的要约成最简分数。

  )迁移应用,巩固提高

  1.迁移应用,解决减法问题:

  1/2-1/4=

  2.完成“试一试”

  出示试一试的+与-,再次为学生提供尝试机会。

  (学生练习后全班回馈交流,并规范书写格式。)

  四、总结规律,内化提升

  师:通过刚才的学习,你发现异分母分数加减法应怎样计算?

  生:异分母分数加减法要先通分,化成同分母分数加减法,再加减。(随着学生汇报教师板书):异分母分数通分转化同分母分数

  五、作业布置

五年级数学教案5

  学习目标

  1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

  2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣

  学情分析重点、难点:

  在现实情景中理解正负数及零的意义。

  易混点、易错点:感受用正数和负数来表示一些相反意义的量

  学生认知基础:生活中见到过负数。

  时间分配学20讲10练10

  教法学法

  自主探索法,练习法,讲授法。

  教学准备

  第一课时

  一、自学例1

  1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。

  2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

  3、上海和北京的气温一样吗?不一样在哪儿?

  4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?

  二、自学例2

  1、了解海拔的意义。

  2、思考从图上你知道了什么?

  3、试着用今天所学的知识来表示这两个地方的海拔高度。

  学生活动教师助学课后改进

  第一课时

  第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1

  (1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。

  (2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

  (3)上海和北京的气温一样吗?不一样在哪儿?

  (5)那你知道在数学上是怎样区分和表示这两个不同的温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)

  第三板块:正数和负数的读、写方法。

  根据课本要求,记住读写方法。

  学生看温度计,选择合适的卡片表示各地气温。

  第三板块:交流学习例2

  交流:从图上你知道了什么?

  交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

  共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;比海平面低155米,通常称为海拔负155米,可以计作﹣155米。

  学生根据今天所学知识把这些数分类。

  正数都大于0,负数都小于0。

  先指名读一读,再用正数或负数表示图中数据。

  先读一读,再说说这些海拔高度是高于海平面还是低于海平面。

  一:教学例1

  1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。

  根据学生的预习,共同学习交流认识新知。

  (4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。

  2.教学正数和负数的读、写方法。

  “+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。

  3.指导完成“试一试”。

  (卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)

  二:教学例2

  1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的`最新海拔高度。

  2.出示例2中珠穆朗玛峰与吐鲁番盆地的海拔高度图。

  三:初步归纳正数和负数。

  ⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?

  ⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;而0既不是正数,也不是负数。

  ⑶提问:正数、负数和0比一比,它们的大小关系怎样?

  四:练习

  做“练一练”1,2题

  2.做练习一第1题。

  3.做练习一第2题。

  4、练习一4、5、6题。

  五:作业

  练习一第3题。

  交流认识新知。

  正数和负数的读、写方法。

  根据课本要求,记住读写方法。

  交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

  正数、负数和0比一比,它们的大小关系怎样?

  正数都大于0,负数都小于0。

  课后反思

  得:

  首先,对教材的编排作了重新的审视。在教材编排中,我们可以观察到,在学习负数的过程中,学生更多的是经历“具体情境中的数——解释数的意义”这样的过程。在教学中我设计了通过观察生活中的盈亏、收支、增减及朝两个相反的方向运动中应用负数进一步理解负数的意义,明白用正负数可以表示一些具有相反意义的量,从而让学生体验负数产生的原因,接着引导学生列举生活中正负数应用的实例。

  失:

  《认识负数》单元的教学看似简单,教起来似乎觉得轻松,学生学习起来也看似轻松,可在解决实际问题的时候,却会发现有各种各样的问题出现。

  由于正负数表示的是相反意义的量,如何帮助学生正确的解决实际生活情境下的正负数问题,这是值得我们在教学中进行思考的问题。由于问题的存在,不得不想一些办法去解决这样的问题。

五年级数学教案6

  教学目标:

  1、理解两个数的公倍数和最小公倍数的意义。

  2、探究找公倍数的方法,会利用列举法找出两个数的公倍数和最小公倍数。

  3、培养学生自主探究的精神和观察、分析、概括的能力;让学生体会数学与生活的紧密联系,树立学好数学的信心。

  教学重点:理解两个数的公倍数和最小公倍数的意义。

  教学难点:探究找公倍数和最小公倍数的方法。

  教具准备:多媒体课件

  教学过程

  一、创设情境

  教师谈话:,乐乐就放假了,很想爸爸妈妈带她出去玩。可乐乐的妈妈从七月一日起每工作3天休息一天,爸爸从七月一日起每工作5天休息一天,他们打算等爸爸妈妈同时休息时,全家一块儿去西湖公园玩。(出示:七月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?

  请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找乐乐妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出乐乐爸爸和妈妈共同的休息日了。

  根据学生的回答,教师逐步完成以下板书:

  妈妈的休息日:4、8、12、16、20、24、28

  爸爸的休息日:6、12、18、24、30

  他们共同的休息日:12、24

  其中最早的一天:12

  二、尝试探讨

  1、几个数的公倍数和最小公倍数的概念教学

  我们一起来看妈妈的休息日,把这些数读一读(学生读数),你发现这些数有些什么特点?

  师:对了,这些数都是4的倍数。(教师顺势把板书中“妈妈的休息日”改成了“4的倍数”。)

  师:刚才我们是在30以内的数中,依次找出了这些4的倍数,如果继续找下去,4的倍数还有吗?有多少个?(学生举例,教师在4的倍数后面添上了省略号。)

  我们再来看“爸爸的休息日”有什么特点?6的倍数有多少个?(把“爸爸的休息日”改成“6的倍数”并添上省略号)

  师:下面我们再来看“他们共同的休息日”,这些数和4、6有什么关系?

  师:对了,这些数既是4的倍数,又是6的倍数,你能给它一个新的名字吗?(把板书中“他们共同的休息日”改为“4和6的公倍数”。)

  师:刚才我们从30以内的数中找出了4和6的公倍数有12、24,如果继续找下去,你还能找出一些来吗?可以找多少?(学生举例,老师根据学生回答,在后面添上省略号。)

  师:这“其中最早的一天”,我们一起给它起个名字,叫什么?

  (根据学生回答,把板书中“其中最早的一天”改为“4和6的最小公倍数”。)

  板书:

  4的倍数:4、8、12、16、20、24、28、……

  6的倍数:6、12、18、24、30、……

  4和6的公倍数:12、24、……

  4和6的最小公倍数:12

  教师谈话:4的倍数、6的倍数、4和6的公倍数、最小公倍数,我们还可以用这样的图来表示:

  出示集合图:

  4的倍数6的倍数4的倍数6的倍数

  4和6的公倍数

  三、深化概念

  师:通过找“共同的休息日”,我们分别求出了这组数的公倍数和最小公倍数。

  请同学们把书翻到51页看例子,填一填

  师:什么是公倍数?

  生:两个数公有的倍数就是他们的`公倍数。

  师:公倍数有多少个?

  生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。

  师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?

  生①:举例:2、4和5的公倍数是20。

  生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。

  师:那你能找出最大的或最小的公倍数吗?

  生:没有最大的,只有最小的。

  师:为什么?

  生:因为公倍数的个数是无限的,所以没有最大公倍数。谁能用自己的话说一说什么叫公倍数?什么叫最小公倍数?

  板书:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

  这就是我们今天要学习的内容。(揭示课题:最小公倍数)

  师:那么我们刚才是怎么找出最小公倍数的呢?

  生说,师写(列举法)

  [点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。]

  4.[出示]找最小公倍数

  2和69和186和245和353和9

  3和57和54和99和11

  让学生找出每组数的公倍数。

  师:有的同学找得很快,能给大家说一说你的方法吗?你发现了什么?

  小组讨论,之后汇报。

  生:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。

  生:2和6的最小公倍数是12,并不是它们的乘积。

  生:大数要是小数的倍数,大数就是它们的公倍数,而且是最小公倍数。例如2和6,9和18,最大的数都是它们的最小公倍数。

  师:你们还能发现了什么?

  生③:第二排每一组都是互质数。例如3和5两个数是互质数。互质数的最小公倍数是它们的乘积。

  师总结

  师;你们能举一些这类的例子吗?

  5、请同学们用刚才的发现做书本52页的第3题,求下面各组数的最小公倍数

  3和610和83和95和46和59和42和76和8

  [点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。]

  四、利用最小公倍数解决生活问题,

  出示:

  (1)“五(1)班同学参加植树劳动,按6人一组或8人一组都正好分完。五(2)班参加植树的至少有多少人?”

  齐读两次,找出题中的关键字,引导中理解题意后放手让生自己完成,同桌间比对。

  (2)人民公园是1路和6路汽车的起点站。1路汽车每3分钟发车一次,6路汽车每5分钟发车一次。这两路汽车同时发车以后,至少再过多久又同时发车?

  (设计理念:借助于生活实例进行对知识的应用,这样不仅可以让生对抽象概念得以理性认识,而且也能切身的体会到数学知识是为生活服务的,在分析中我紧抓关键字突破难点,这样可以让生学会解决问题的技巧。)

  五、小结

  今天学习了什么内容?什么叫最小公倍数?

  我们今天学习了求最小公倍数的哪几种情况?

  怎样才能很快地求出它们的最小公倍数?

  板书:找最小公倍数

  一般关系列举法

  倍数关系较大数

  特殊关系

  互质关系两数的乘积

五年级数学教案7

  教学目标

  知识与技能:

  明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

  过程与方法:

  能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  情感态度与价值观:

  渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

  教学重难点

  教学重点:

  在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

  教学难点:

  根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

  教学工具

  多媒体设备

  教学过程

  教学过程设计

  1 创设情境,引导探索

  师:生活中有许多图形,老师今天准备了4幅,大家观察一下,这些图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?

  图一

  图二

  图三

  图四

  课件逐一出示图一、图二、图三,图四让学生发表意见。

  生1:小房子的表面是由一个三角形和一个正方形组成的。

  生2:风筝的面是由四个小三角形组成的。

  生3:队旗的面是由一个梯形和一个三角形组成的。

  生4:七巧板是由三角形,长方形,正方形和平行四边形组成的。

  师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?

  生1:由两个或两个以上的图形组成的是组合图形。

  生2:有几个平面图形组成的图形是组合图形。

  师小结:组合图形是由几个简单的图形组合而成的。

  图一:是由三角形、长方形、加上长方形中间的正方形组成的,

  面积= 三角形面积+长方形面积-正方形面积

  图二:作辅助线使它分成一个大梯形和一个三角形。

  方法一:分割法:将整体分成几个基本图形,求出它们的面积和。

  是由两个梯形组成的。

  师:为什么要分成两个梯形?怎样分成两个梯形?

  引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。

  师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计算。

  (板书:转化)

  大家想想,用辅助线的方法还有不同的作法吗?

  方法二:添补法:用一个大图形减去一个小图形求出组合图形的面积。

  作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形

  图三:是由四个三角形组成的。

  面积 = 三角形面积+三角形面积+三角形面积+三角形面积

  2 新知探究

  (一)右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

  ( 三角形+正方形 )

  右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

  ( 两个完全一样的梯形)

  (二)计算组合图形的面积,一般是把它们分割成基本图形,如长方形、正方形、三角形、梯形等,再计算它们的面积。

  3 巩固提升

  (一)这是学校教学楼占地的面积平面图,你能用几种方法求出它的面积?

  (二)一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的'盒子。这张硬纸板还剩下多大的面积?

  (三)下面各个图形可以分成哪些已学过的图形?

  (四)学校要油漆60扇教室的门的正面。(单位:米)需要油漆的面积一共是多少?

  (五)求下列图形中阴影部分的面积。

  (六)求下列图形中阴影部分的面积。

  (七)如图,有两个边长是200px的正方形放在桌面上,求被盖住的桌面的面积。

  课后小结

  (一)学生总结

  这节课你学习了什么?有什么收获?还有什么不明白的地方?(小组说--组内总结--组间交流)

  (二)教师总结

  今天我们认识了组合图形,并能将组合图形分割成已经学习过的图形,计算出它的面积。

  板书

  组合图形的面积

  组合图形是由几个简单的图形组合而成的

五年级数学教案8

  《折线统计图》

  知识背景和目标定位:

  《折线统计图》是在学生已经掌握了收集,整理数据并制成统计表(单式和复式)和条形统计图(单式和复式)来表示统计结果,并能根据统计图表解决简单的实际问题,了解了统计在现实生活中的意义的基础上了解和掌握的一种新的统计图。

  基于以上认识,把《折线统计图》的教学目标定位于以下几点:

  1、认识折线统计图,并知道其特征。

  2、能从折线统计图中发现数学问题,同时能够依据数据变化的特征进行合理的推测。

  3、通过对数据的简单分析,进一步体会统计在生活中的意义和作用

  教学设计:

  一、创设情境

  1、课件出示相山公园图片

  师:知道这是哪儿吗?看到这些画面你想说点什么?

  预设生:人多、人山人海………

  2、由统计表提出问题

  师:是的,浏览的人真得很多,为了使大家能更清楚地了解和分析这几年浏览相山公园的`人数的情况,你认为可以用哪些方法来表示人数?

  预设生:统计表,条形统计图……

  仔细观察,你能从统计表中知道些什么?

  学生回答

  师:老师这儿还带来了一个问题,在相邻的两个年份()年到()年浏览人数增加最快?(课件出示)

  质疑:我们能不能不计算,换一种方式就可以很直观地看出()年到()年人数增加最快?

  出示条形统计图,提问:这幅统计图是用什么表示每年浏览的人数?这也不能很直观的看出哪年到哪年人数增加最快.

  师:我在公园里还看到这样一幅统计图(出示折线统计图)

  二、探究新知

  1、初步感知:

  师:在这幅统计图中,横轴代表什么?纵轴代表什么?

  每一年的浏览人数在这幅统计图中都能找到吗?

  这幅统计图是通过什么来表示每年的浏览人数的?(点)师板书:点

  2、深入探究

  带着三个问题来研究折线统计图

五年级数学教案9

  学生独立分析数量关系,并列式计算,并独立尝试画线段图。

  指名板演后说一说为什么用减法计算。

  总结:要求格尔木到拉萨的铁路长多少千米,就要从西宁到拉萨的铁路全长中去掉西宁到格尔木的铁路长;而要求西宁到格尔木的铁路长多少千米,就要从西宁到拉萨的铁路全长去掉格尔木到拉萨的铁路长。

  请观察以上两道问题与之前第(1)题有什么联系?

  总结:第(1)题实际是已知两个数,求它们的和是多少,做加法;而(2)(3)题是已知两个数的和与其中的一个加数,求另一个加数,做减法。

  想一想:减法是一种怎样的运算。

  总结:已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。在减法中已知的和叫做被减数,其中的一个加数叫做减数,所求的另一个加数叫做差。

  2、探究加、减法各部分间的关系

  你能说一说加法和减法各部分之间的关系吗?

  小组讨论后汇报交流,教师并板书。

  你觉得加法和减法之间有什么关系?用一句话来概括。

  教师总结:减法是加法的逆运算。

  三、巩固发散

  1、根据加、减法之间的关系,写出下面算式对应的两道减法算式。

  125+346=471

  34+595=629

  654+528=1182

  2、独立完成P3做一做,说一说你是怎么想的。

  四、评价反馈

  说一说你有什么收获。

  板书设计:

  加、减法的意义和各部分间的`关系

  814+1142=1956(千米)1956—1142=814(千米)

  1956—814=1142(千米)

  加法:把两个数合并成一个数的运算减法:已知两个数的和与其中的一个加数,求另一个加数的运算

  和=加数+加数差=被减数—减数

  加数=和—另一个加数减数=被减数—差

  被减数=减数+差

  沪教版四年级下册《四则运算》数学教案

  沪教版四年级下册《四则运算》数学教案

  教学目标:

  知识与能力:

  复习四则运算。

  过程与方法:

  通过复习四则运算,进一步提高学生的计算能力。

  情感态度价值观:

  培养学生认真、仔细的做题习惯和检查习惯。

  教学重点:

  通过复习四则运算,进一步提高学生的计算能力。

  教学难点:

  通过复习四则运算,进一步提高学生的计算能力。

  教学准备:

  学生练习本。

  教学过程:

  一、口算练习

  巡视学生练习情况,集体校对。

  做口算练习第一页上的1。

  二、情境引入

  学习有关奥运的知识。

  (出示贺年卡)谈话:这是老师在假期收到的贺年卡,你认识它吗?(福娃)

  说说有关“福娃”的知识

  三、四则运算练习

  1、提问:

  你想了解更多奥运知识吗?

  正确计算结果就有答案了!

  学生同桌说说运算顺序,再独立计算。

  1。没有括号的计算题。

  出示:

  2630—867+133

  581—31×18

  做完自觉复习

  2。有括号的计算题。

  (158+125)×2

  196÷(712—698)

  456÷19×83

  交流自己检查的方法。

  3。小结计算顺序并练习。

  组织学生集体校对答案。

  齐读奥运知识

  2、将答案填入书本第一页,全班一起朗读有关奥运知识。

  3、你们还想了解吗?

  33×(225÷15)

  944÷(105—89)

  1210÷(89+21)

  2112÷(16×3)

  134×16÷67

  1300×(700÷10)

  组织学生集体校对答案。

  学生同桌说说运算顺序,再独立计算。

  做完自觉复习

  交流自己检查的方法。

  齐读奥运知识

  将答案填入书本第一页,全班一起朗读有关奥运知识。

  四、课堂总结

  归纳:四则运算的顺序是怎样的?我们要注意什么?

  指名回答问题

  板书设计

五年级数学教案10

  一、准备练习

  (一)口算

  3.8+1.2 2.54 1.58

  1.50.3 0.64+0.16 7.6+0.24

  5-1.8 1.2580 3.64

  6.3+2.45+3.7 3.56-1.57-0.43

  0.87125 (2.5+0.9)4

  (1.5+0.25)4 0.64+1.44

  (二)口答,在□里填上适当的数.(说出依据)

  1.3.18□=1.2□

  2.(2.5+3.5)□=□□○□4

  3.□+4.3=□+0.86

  4.(2.51.2)□=1.2(□□)

  5.7.6-2.8-□=□-(□+3.2)

  (三)小结引入

  我们运用一些运算定律或者运算性质可以使计算简便,在四则混合运算中,能不能运用这些运算定律和性质,使计算简便呢?

  二、讲授新课

  (一)教学例4

  1.82.58+1.81.42

  1.观察算式特点

  2.学生试做

  方法一:1.82.58+1.81.42 方法二:1.82.58+1.81.42

  =1.8(2.58+1.42) =4.644+2.556

  =1.84 =7.2

  =7.2

  3.观察比较:两种方法哪一种计算起来比较简便?

  (第一种方法应用乘法分配律来计算,第二种方法只是根据一般的`运算顺序)

  4.练习

  1.82.58+1.81.42+0.5

  =1.8(2.58+1.42)+0.5 (乘法分配律)

  =1.84+0.5

  =7.2+0.5

  =7.7

  5.小结

  通过刚才的练习,你对简算有什么新的认识?

  三、巩固练习

  (一)计算下面各题

  1.561.7+0.441.7-0.7

  11.72-7.85-(1.26+0.46)

  (二)计算下面各题,能用简便算法的用简便算法

  10.64+7.652.4+11.76

  12.9〔14.66-(1.3+8.2)〕

  9.83(3.8-2.3)+1.56.17

  6.752-〔4.7(0.54-0.38)+2.8〕

  15.4〔8(6.34-4.59)〕

  (三)思考题:填同一个数

  □-□+□+(□□□-□)=10

  四、课堂小结

  在四则混合运算中,有时虽然不能把整个题目简便计算,但是应该随时注意是不是有的步骤可以简算,能简算的,尽量使计算简便,不能简算的再按运算顺序计算.

  五、课后作业

  (一)计算下面各题,能用简便算法的用简便算法.

  1.10.64+7.652.4+11.76

  2.12.75[14.6-(1.3+8.2)]

  3.9.831.5+6.171.5

  4.15.4[8(6.34-4.59)]

  (二)新兴煤矿七月份产煤4.85万吨,八月份产煤5万吨,九月份产煤5.65万吨.平均每月产煤多少万吨?

五年级数学教案11

  一、说教材

  1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》

  2、教材分析:

  随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。

  3、教学重、难点:求平均数说课稿

  平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的难点。

  4、教学目标

  在学生计算出平均数的基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:

  知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。

  能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。

  情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。

  二、说教法:

  “求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。

  三、说学法:

  在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。

  四、说教学过程:

  五年级下册数学平均数的再认识教学设计

  教学内容 平均数的再认识

  教学目标

  1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。

  2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。

  3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。

  教学重点

  难点 掌握求平均数的方法。

  体会平均数在实际生活中的应用。

  教具准备:多媒体

  教学课时:1课时

  教学过程

  一、情境引入。

  1、出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的'儿童免费乘车。1.2米这个数据是如何得到的呢?

  2、学生质疑,说一说你的看法。

  二、新授。

  1、解决疑惑。

  学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。

  出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。

  2、求平均数的方法。

  出示:“新苗杯”少儿歌手大奖赛的成绩统计表。

  评委1 评委2 评委3 评委4 评委5 平均分

  选手1 92 98 94 96 100

  选手2 97 99 100 84 95

  选手3 90 98 87 85 90

  (1)把统计表填写完整,并排出名次。

  (2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?

  (3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。

  3、教授解题策略。

  题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。

  求平均数的方法:总数量÷总份数=平均数。

  选手1:(92+98+94+96+100)÷5=96(分)

  选手2:(97+99+100+84+95)÷5=95(分)

  选手3:(90+98+87+85+90)÷5=96(分)

  4、计算完毕请补充统计表,并排出最终名次。

  板书设计

  平均数的再认识

  平均数的意义。

  求平均数的方法:总数量÷总份数=平均数。

五年级数学教案12

  教学目标

  (一)通过教学,学生能比较正确地计算分数加、减混合运算的式题。

  (二)在教学中,培养学生仔细、认真的良好学习习惯。

  (三)培养学生对比、观察的能力。

  教学重点和难点

  分数加、减混合运算的计算方法;带有小括号的分数加、减混合运算。

  教学用具

  教具:小黑板,投影片。

  教学过程设计

  (一)复习准备

  1.教师:整数加、减混合运算的运算顺序是什么?

  2.计算下面各题:

  教师:分数连加、连减为什么可以一次通分再计算?

  (二)学习新课

  尝试计算例1。

  通过订正找出简便的计算方法。

  教师:

  ①分数加、减混合运算的'顺序和整数加减混合运算的顺序相同吗?

  ②例1与准备题比较哪相同?哪不同?(讨论)

  ③怎样计算比较简便?

  板书:

  明确:分数加、减混合运算与整数加、减混合运算顺序相同,为了简便,几个分数可以一次通分,然后按照运算顺序依次进行加减计算。

  说明:虚线框的部分,我们在计算带分数加减混合运算时,可以按照这样的方法去想,但在做题时这一过程可以省略不写,而直接写出计算结果。

  教师:计算结果要注意什么问题?

  教师:①先算什么,再算什么?

  ②分两步计算,是一次通分好,还是分步通分好呢?

  学生尝试计算并订正。

  教师:①怎样计算简便?

  ②为什么分步通分简便一些?

  说明:虚线框的通分过程,以后计算熟练了可以不写,或写在草稿纸上,也可以直接写出结果,不断提高自己的计算能力。

  教师:结果要注意什么?

  (三)巩固反馈

  1.做一做。

  2.判断正误并说明理由。

  3.按照下图的计算步聚列出综合算式,并算出得数。

  4.思考题:

  华和王英比,谁高一些?高多少米?

  (四)课堂总结

  分数加减混合运算的运算顺序,和整数加减混合运算顺序相同。为了简便,几个分数可以一次通分,然后按照运算顺序依次进行加减计算。如果有小括号,用分步通分的方法比较简便。

  教师:计算分数加减混合运算应该注意什么问题?

  最后结果要化为最简分数。

  (五)布置作业课本140页练习三十一,1,2。

  课堂教学设计说明

  这部分内容是在学生掌握了分数加、减法计算方法的基础上教学的。一方面把整数加减混合运算的运算顺序推广到分数加减混合运算;另一方面,为学习小数、分数加减混合运算做好准备。通过学生亲身尝试,学生发现分数加减混合运算的计算方法,并且掌握灵活通分的方法。借助准备题与例1的对比,学生自己学会了新知,培养学生对比和分析问题的能力,同时也培养了学生认真计算、检查的良好学习习惯。

五年级数学教案13

  教学目标

  1.通过教学使学生在旧知识的基础上,进一步认识用字母表示运算定律和计算公式.

  2.理解用字母表示数的意义.

  3.知道一个数的平方的含义及读写法,学会在含有字母的式子里简写和略写乘号.

  4.使学生学会应用字母公式求值.

  教学重点

  用字母表示运算定律和公式;根据字母公式求值.

  教学难点

  理解一个数的平方的含义,乘号的简写和略写.

  教学过程

  一、铺垫孕伏

  (一)在下面的□里填上适当的数,并说明根据什么.

  18+34=34+□

  (35+55)+45=357+(□+□)

  35×□=59×□

  (1.2×2.5)×4=1.2×(□×□)

  (4+8)×□=□×3.5+□×□

  二、探究新知

  (一)教学用字母表示运算定律.

  1.学生叙述各运算定律的内容,并用字母公式表示出来.

  教师板书

  (1)加法交换律:

  (2)加法结合律:

  (3)乘法交换律:

  (4)乘法结合律:

  (5)乘法分配律:

  2.观察比较:用字母表示运算定律比用文字叙述有哪些优点?

  优点:用字母表示运算定律比用文字叙述运算定律更简明易记,也便于应用.

  (二)教学用字母表示计算公式.

  1.教学用字母表示图形面积公式(出示图片:图形面积公式)

  (1)表示正方形的面积,表示正方形的边长.

  (2)表示平行四边的面积,、分别表示平行四边形的底和高.

  (3)表示三角形的面积,、分别表示三角形的底和高.

  (4)表示梯形的面积、、分别表示梯形的下底和高.

  2.教学一个数的平方的含义及正方形周长的书写格式.

  (1)读出下面各式,并说明表示的意义.

  (2)把下面各式写成一个数的平方的形式.

  5×5

  (3)省略乘号,写出下面各式.

  (4)根据运算定律在□填上适当的字母或数.

  (□+□)+□

  □·(□·□)

  (5)如果用表示长方形的长,表示宽,那么

  这个长方形的面积_____________________,

  这个长方形的周长_____________________.

  教师小节:在含有字母的式子里,乘号可以省略,但加号、减号、除号都不能省略,如:

  不能写成;在两个数相乘的时候,乘号不能省略不写,可以改为“·”,但容易与小数点混淆,所以一般仍记作“×”.

  3.教学例1.

  例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.

  教师说明:在我们计算一个图形的面积或周长时,实际上是把数值代入有关的公式,算

  出的结果就是它的'面积或周长.

  (1)说出梯形的面积公式.

  (2)说出梯形面积公式中每一字母表示的意义.

  (3)说出字母所代表的数值.

  (4)学生尝试解答.

  教师强调:在利用公式进行计算时,计算的结果不必写出单位名称,只在答题时注明就行了.

  (5)练习:一个长方形的长是8.4厘米,宽是4.6厘米,它的周长是多少厘米?

  三、课堂小结

  今天这节课学习了什么知识?

  四、课后作业

  (一)已知一个三角形的底是3.8分米,高是1.5分米.求这个三角形的面积.

  (二)先写出下面图形的周长和面积的计算公式,再把数值代入公式计算.

  1.一个长方形,长7.2厘米,宽1.8厘米.

  2.一个正方形,边长24毫米.

  五、板书设计

  用字母表示运算定律和计算公式

  运算定律

  计算公式

  可以写成

  读作:的平方

  表示:两个相乘

  例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.

  =(3.5+5.5)×4÷2

  =9×4÷2

  =18

  答:梯形的面积是18平方厘米.

  探究活动

  找规律

  活动目的

  1.能正确用含有字母的式子表示数量.

  2.培养学生的抽象思维能力和概括能力.

  活动题目

  仔细观察,发现规律,得出结论,然后填空.

  35=3×10+5702=7×100+0×10+2

  72=7×10+2123=1×100+2×10+3

  16=1×10+6564=5×100+6×10+4

  …………

  1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是().

  2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是().

  数学教案-用字母表示运算定律和公式

  活动过程

  1.学生分小组讨论.

  2.汇报思考过程和答案.

  3.仿照题目类型,每个小组自编一组练习,相互交换解答.

  参考答案

  1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是(10a+b).

  2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是(100a+10b+c).

五年级数学教案14

  教材说明

  综合应用“量一量找规律”是在完成了第四单元“简易方程”的教学之后安排的,旨在让学生综合运用所学的测量、统计和方程等方面的知识,通过动手操作揭示事物之间的内在规律,激发学生学习数学的兴趣,在培养学生实践能力的同时培养学生归纳推理的思维能力。

  “量一量找规律”活动由以下四部分组成。

  1.自制实验工具。

  学生在充分理解方程意义的基础上,利用皮筋、木棒、盘子和细绳等材料小组合作制作一个简易秤。具体的做法是用细绳将盘子拴住做成一个托盘,然后用皮筋分别将托盘和木棒拴住。

  2.收集实验数据。

  学生利用自制的简易秤,依次称量1本、2本、3本等不同数量的课本,在统计表中记录称量的课本数和相应的皮筋总长度,并计算出每增加一本书皮筋伸长的长度。

  3.分析数据。

  引导学生观察统计表中的信息,并根据表中的数据绘制折线统计图,启发学生讨论从统计图表中能够获得哪些信息。

  4.根据统计结果归纳推理。

  根据统计图表的结果小组合作探究皮筋长度和课本数二者之间存在的规律及此规律适用的范围。

  整个活动不仅使学生经历从收集实验数据、数据、制成统计图表到根据统计结果推理事物之间内在本质关系的全过程,而且促使学生进一步体验运用所学知识探究未知事物的乐趣。

  教学建议

  1. 这部分内容可用1课时进行教学。

  2. 这个活动是一个操作性很强的活动,教学时可采用小组合作的形式放手让学生尝试,充分调动学生自主探索的积极性,教师只在关键处予以一定的引导和点拨。

  3.在制作实验工具部分,教师可提前布置学生准备制作材料,并引导学生思考:对制作简易秤使用的橡皮筋和木棒有什么具体要求,启发学生选择弹性较好的橡皮筋,至少在称量6本数学书时不会超出弹性限度或发生永久变形;选择的木棒要尽量做到长度适中、粗细均匀,在称量时不会弯曲、变形。此外,拴盘子时要注意拴的角度和拴绳的长度,使托盘在称量时保持水平、稳定。当然,教师也可根据情况灵活安排,如可用弹簧来代替橡皮筋,在制作时用铁钩等代替木棒达到称量的目的。

  4.在收集实验数据部分,教师可在实验之前要求学生先明确书本第77页中统计表中要求采集的信息,并引导学生讨论测量过程中应该注意的事项。例如,要明确测量的'起点和终点;测量皮筋长度时要等橡皮筋和秤盘均处于稳定状态时再测;称量时要设法使木棒保持水平……这样得到的数据误差较小。具体实验的实施可采取小组分工合作的形式。

  5.在分析数据部分,教师根据统计表绘制出折线统计图,引导学生仔细观察统计图表,想一想统计图表呈现的特点,并讨论它们传达出的信息。然后,对应统计图表,请小组同学互相说一说:“如果要称量7本书,皮筋会伸长多少?8本呢?10本呢?”

  6.在根据统计结果归纳推理部分,老师引导学生思考皮筋长度和课本数二者之间存在的规律,向学生初步渗透函数的。如果有的小组实验数据与理论上y=a+bx(a代表皮筋原长,b代表每增加一本书皮筋伸张的长度)的关系存在一定误差,老师可引导学生分析原因,也可向学生客观说明。

  7.在学生出二者之间存在的规律后,老师还可进一步启发学生思考“如果要称量的课本越来越多的话,皮筋会发生什么变化”,帮助学生理解上述二者的关系均是建立在皮筋的弹性限度之内的,反之,二者的关系不存在。

五年级数学教案15

  教学目标

  1.通过直观的操作活动,理解异分母分数加减法的算理。

  2.能正确计算异分母分数的加减法。

  教学重点

  异分母分数加减法的计算法则。

  教学难点

  把分母不同的分数通过通分化成分母相同的分数。

  教具、学具

  学生准备几张用来折纸的纸张。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  1、复习引题

  1.在三年级时我们就已经学过了同分母分数加减法,大家还记得怎么计算吗?

  2、先看书上的折纸活动

  师:要知道他们两个人一共用了这张纸的几分之几?要怎样列式

  3、新授

  1.估一估他们用了这张纸的几分之几?

  2.再算一算他们用了这张纸的几分之几?

  3.重点教学加的计算教师引导学生理解要先通分然后才能计算的算理。

  口算。

  2/7+3/7=5/6+1/6=

  13/14-3/14=

  1/12+5/12=

  同桌的两个同学也像那两个同学一样折一折纸,并列出算式:

  1/2+1/4=

  通过折纸来估计

  小组讨论书上两幅图的`计算方法,理解通过通分把异分母分数化成同分母分数就是解决异分母分数不能相加减的办法。

  回忆同分母分数加减法的计算方法。

  通过折纸学生直观的认识到异分母分数加减计算的学习必要性。

  通过折纸活动让学生理解不是简单分母与分母,分子与分子的相加。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  4.总结异分母分数加法的计算法则。

  5.自学异分母分数减法

  学生自学,教师巡回指导。

  4、巩固练习

  Ρ65练一练

  5、全课总结

  学生讨论刚才的计算方法,并总结:异分母分数相加,要先通分,化成同分母分数,再把它们相加。

  学生自己看书学习

  第(2)题小红比小明多用了这张纸的几分之几?

  根据加法的法则自己总结法则。

  学生独立完成第1题教师指名回答说说是怎么想的

  培养学生总结归纳知识的能力。

  在独立探索中掌握异分母分数减法的计算方法。

  学习知识的归纳总结

  板书设计:折纸

  异分母减法的计算方法:

  分母不相同的分数相加减,要先通分,化成相同的分母,再加减。

  练习

《五年级数学教案合集15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【五年级数学教案】相关文章:

五年级教案数学教案12-27

五年级数学教案11-26

五年级数学教案【荐】04-02

五年级上册数学教案03-26

五年级下册数学教案11-09

小学五年级数学教案12-15

五年级下册的数学教案范文01-06

苏教版五年级数学教案04-12

众数的五年级数学教案11-18

五年级数学教案:通分04-07

五年级数学教案合集15篇

  作为一名教学工作者,就不得不需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。如何把教案做到重点突出呢?下面是小编整理的五年级数学教案,希望对大家有所帮助。

五年级数学教案合集15篇

五年级数学教案1

  一、教学目标

  (一)知识与技能

  在长方体、正方体的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,加深对已学知识的理解和深化。

  (二)过程与方法

  经历探究测量不规则物体体积方法的过程,体验“等积变形”的转化过程。获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作的精神、创新精神和问题解决能力。

  (三)情感态度和价值观

  感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。

  二、教学重难点

  教学重点:在测量不规则物体体积的过程中感悟“转化”的数学思想。

  教学难点:综合运用所学知识测量不规则物体体积的活动经验和具体方法。

  三、教学准备

  量杯、水、梨、土豆、石块、橡皮泥、A4纸。

  四、教学过程:

  (一)谈话交流,导入新课

  教师:同学们,经过今天的学习,我们已经掌握了关于体积和容积的知识,你会求长方体和正方体的体积吗?如果要求一个长方体的体积,我们需要知道哪些信息?

  教师:(出示一张A4纸)严格来说,一张A4纸也是一个薄薄的长方体,那么你能求出它的体积吗?

  引导学生思考,悟出一张纸太薄了,可以用多些的纸来测量,再进一步感悟到用整十、整百张来测量更便于计算。

  板书:V1张=V100张÷100。

  设计意图通过测量A4纸的体积,即复习了长方体体积的计算方法,同时又有所超越,激发了学生探究的欲望,为后面测量不规则物体的体积埋下伏笔。

  (二)探究合作,测量体积

  1.明确任务,思考方案。

  教师:刚才我们是直接测量一张A4纸的体积吗?我们是把1张A4纸的体积转化为100张,然后再求出一张。这里同学们很聪明地利用了转化思想,从而想出了测量方法。规则物体的体积测量过了,那大屏幕上这些不规则物体的体积,你想测量吗?今天我们就来测量不规则物体的体积。(板书课题并出示课件)

  教师:不规则物体的体积你会测量吗?先互相说说打算怎么测量?(给时间让学生小组讨论测量方案。)

  设计意图在动手实验之前,给予学生思考的时间,能使学生明确实验的任务和养成先制定实验方案,再根据方案实验的科学态度。

  2.合作交流,汇报方案。

  学生1:橡皮泥容易变形,我们可以把橡皮泥压制成规则的长方体或者正方体,再测量长、宽、高从而计算出橡皮泥的体积。

  学生2:可以把梨放到装水的量杯里,水面上升部分水的体积就是梨的.体积。

  教师指出,这种方法可以称为“排水法”。

  设计意图在独立思考和小组交流的基础上,学生一定能够想到许多不同的方案,再通过这些方案的比较,使学生感受到哪些方案是可行的,从而培养学生自主探究的能力和学习数学的热情。

  3.小组合作,操作实践。

  (1)学生分组操作,并把测量数据填写在记录单里。

  (2)请小组代表上台重点介绍排水法测量梨的体积,一个同学汇报,组内同伴演示实验过程。

  (3)教师适时板书:V物体=V上升部分。

  教师:想一想,遇到下面这两种情况,你还能计算出这些不规则物体的体积吗?

  4.再次实验,深化认识。

  实验一:请同学将量杯里的土豆取出,观察量杯中的水位发生了什么变化?

  实验二:把一块石头放入装满水的量杯,杯中的水又有什么变化?

  教师根据学生的回答适时板书,完善结论。

  V物体=V下降部分;

  V物体=V溢出部分。

  教师:我们现在懂得了利用转化思想测量不规则物体的体积,谁来说一说,用排水法测量不规则物体的体积需要记录哪些数据?可以利用刚才的方法测出乒乓球和冰块的体积吗?为什么?

  设计意图教师利用学生实验过程中的亲身体验,引导学生感悟测量不规则物体体积时转化思想的应用,并且激发学生积极思考不同的转化方法,使学生对利用排水法测量不规则物体体积有一个丰富的体验和感受,让学生体会到“做中学”的乐趣。

五年级数学教案2

  教学目标:

  使学生了解"分数"产生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.

  教学重点:

  使学生理解"分数"的意义,弄清分母,分子及分数单位的含义.

  教学难点:

  使学生理解"分数"的意义,弄清分数单位的含义.

  教学课型:

  新授课

  教具准备:

  课件

  教学过程:

  创设情景,温故引新

  1,提问:

  A,大家知道分数吗 谁能说一个分数

  B,你能举个实例说说这个分数的意义吗

  2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.

  3,揭示课题:分数的意义

  二,联系实际,探究新知

  自主学习,整体感知分数的知识.

  (1)相互交流:① 关于分数我已经知道了什么 请把已知道的讲给同学们听.

  (2)自学理解:① 关于分数,自学后我又知道了些什么

  ② 我还有什么不明白的地方呢

  ③ 关于分数我还想知道什么

  2,探究深化,进一步理解分数的意义.

  (1)用分数表示下面各图中的阴影部分.[课件1]

  (2)填空.[课件2]

  ① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( ).

  ② 把一块饼平均分成2份,每份是它的( )/( ).

  ③ 把一个正方形平均分成4份.1份是它的( )/( );3份是它的( )/( )

  (3)用一张长方形的纸,折出它的1/4,并涂上阴影.

  用一张正方形的纸,折出它的3/8,并涂上阴影.

  (4)抢答. [课件3]

  ① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( ).为什么是1/2 若平均分给5位;10位;50位同学呢

  ④ 如果这个文具盒里只有6枝铅笔.现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗谁来说说这里的1/2所表示的意义

  ⑤ 如果把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义如果是100;1000枝呢

  (5)说说下列分数所表示的意义.[课件4]

  5/7 3/8 3/( ) ( )/9 ( )/( )

  3,小结.

  我们可以把许多物体看作一个整体,比如:一堆苹果,一批玩具,一班学生,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我把它叫做单位 "1".

  板书: 一个物体

  单位"1" 一个计量单位

  许多物体组成的.一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.

  三,加强练习,深化概念

  比赛:请两位同学站起来.

  提问:A,这两位同学是这组人数的几分之几

  B,这两位同学是两组人数的------- 这两位同学是全班人数的-------

  四,家作

  1,P88 .1,2

  2,P89 .3

  板书设计:

  分数的意义

  一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数

五年级数学教案3

  教学目标:使学生理解和掌握真分数,假分数的意义和特征,学会把假分数化成整数。

  教学重点:真分数和假分数的特征。

  教学难点:等于1的假分数。

  教学课型:新授课

  教具准备:课件

  教学过程:

  一,激发兴趣,引出概念

  1,真分数和假分数的意义及特征

  (1)观察比较下列每个分数中分子,分母的大小,并试着按一定的原则把这些分数分组。[课件1]

  1/33/33/41/55/62/53/5

  4/55/57/49/510/511/515/5

  ①板述:分子比分母小的分数叫做真分数。

  分子比分母大或者分子和分母相等的分数,叫做假分数。

  ※请说出3个真分数,3个假分数。

  ②观察比较:A,说一说第二组中的两个分数的意义这样的'分数等于多少

  B,再请观察第一,三组的分数的分子与分母的大小关系,分数值

  与1的关系,你发现有没有规律

  板书:真分数小于1;假分数等于或大于1。

  (2)在下面的线段图上,哪一段上的点表示的是真分数哪一段上的点表示的是假分数[课件2]

  (3)揭示课题:

  由图上可以清楚地看到,真分数,假分数实际上是以1为界,把分数分为了两类。所以这节课我们看上去研究的是分数的分子和分母的大小关系,而实质却是真分数和假分数。

  板书课题:真分数和假分数的意义及特征

  ※①下面分数中哪些是真分数哪些是假分数[课件3]

  1/33/35/31/66/67/613/6

  ②把上一题中的分数用直线上的点表示出来,看一看表示真分数的点和表示假分数的点,分别在直线的哪一段上。[课件4]

  2,把假分数化成整数。

  观察下列分数,它们有没有共同的特点[课件5]

  3/35/510/515/5

  提问:A,这些假分数还可以用什么数来表示

  B,我们可以用什么方法把它们化成整数这样计算的依据是什么

  (分子除以分母,分数与除法的关系。)

  (2)教学P99。例3:把3/3,8/4化成整数。

  板书:3/3=3÷3=1提问:A,3÷3表示什么

  8/4=8÷4=2B,8÷4表示什么

  c,说一说怎样把假分数化为整数

  (3)练习:把8/2,9/3,4/4,12/6化成整数。[课件6]

  二,巩固练习,提高能力

  1,说出四个分母是7的真分数。

  2,说出3个分数值是1的假分数。

  3,说出两个分母是9,分数值比1大又比2小的假分数。

  4,把下面这些分数化为整数。[课件7]

  24/425/572/454/6100/25

  5,判断正误,并说明理由。[课件8]

  (1)分母比分子大的分数是真分数。(2)假分数的分子比分母大。6,分数a/b中,当a,b分别是什么数时,它为真分数什么数时,它为假分数

  三,全课总结,抽象概括

  提问:怎样将真分数,假分数,假分数化整数

  四,家作

  P101。1,2,3

  板书设计:真分数和假分数的意义及特征

  分子比分母小的分数叫做真分数。例:1/2,3/5,11/12真分数<1

  分子比分母大或者分子和分母相等的分数,叫做假分数。例:5/3,8/8

  假分数≥1。

五年级数学教案4

  一、教学目标

  1、通过直观的折纸操作活动,理解异分母分数加减法的算理,能正确计算异分母分数的加减法

  2、引导学生利用学生自主折纸得到的算式,经历提出问题、自主探究、得出算法、解决问题的过程。从中渗透转化、建模等教学思想,提高学生解决问题的能力。

  3、通过折一折,画一画、说一说,算一算等活动激发学生学习数学的兴趣,并让学生在学习活动中获得积极的、成功的情感体验。

  二、教学重、难点

  1、重点:通过折纸探索并掌握异分母分数加减法的计算方法。

  2、难点:利用折一折,画一画、说一说,算一算等活动理解先通分,再加减的算理。

  三、教学设计

  (一)动手操作,明确目标

  1.谈话导入,开门见山板书课题:

  异分母分数加减法,出示学习目标,生齐读

  (1)探索并掌握异分母分数加减法的计算方法。能正确计算异分母分数的

  加减法。

  (2)通过直观的操作活动,理解异分母分数加减法的算理。

  师:听说咱们班的同学个个都是折纸高手,这节课老师就要和大家一起来通过折

  纸研究解决解决异分母分数加减法的相关知识,有信心吗?

  2.请看要求

  ①折一折:平均折出你喜欢的份数。②画一画:用斜线画上你想画的份数。③说一说:画斜线部分是正方形纸片的几分之几?

  3.动手操作

  师:老师已经给每位同学都准备了两张大小一样的.正方形纸张,请你拿出其中的一张按照要求动手操作。开始。(学生明确要求后,进行折纸、涂色、交流等活动,教师巡视指导。)

  4.学生汇报展示。

  师:谁能说一说自己是怎么折的,涂色部分是这张正方形纸片的几分之几?(学生汇报,老师将学生的折纸和涂色情况贴在黑板上并在纸旁板书相应的分数)

  5.提出问题,明确目标

  师:同学们,如果现在要把黑板上两张纸中的涂色部分加起来你可以列出哪些加法算式?(学生口述算式,教师分别将学生提出的算式书写在黑板上。)

  想一想你能把这些算式分成几类?你是根据什么分的?(同分母、异分母)(教师根据学生的回答,将黑板上的算式进行整理。)

  还记得如何计算同分母分数加减法吗?谁来说说?(齐读同分母分数加减数的计算方法。同时将同分母分数加法让学生进行练习,口算出每道题的结果。)

  师:从学生汇报的异分母加法算式中任意选择一道问:异分母分数如何加减呢?下面我们就来探索分母不同的分数相加减的计算方法。

  (二)自主探索,理解算理

  1、自主探索进行算理探究。

  师:出示生自编算式(1/2)+(1/4),请大家猜猜看,这道题的结果会是几呢?独立尝试,汇报各自的计算过程与结果。预设:可能出现的情况如下:

  结论1:(1/2+1/4=1/6)

  结论2:(二分之一加上四分之一等于四分之三)

  结论3:(二分之一加上四分之一等于六分之二)

  2、讨论验证

  师:为什么同样的算式,会出现不同的结果呢?到底谁对谁错呢?

  生:在全班范围内展开讨论,充分发表各自的意见。

  3、理解算理。

  师:刚才有人说结果是(---),有人说是(---),还有人说是0.75,到底谁对谁错呢?送给大家一句话“实践是检验真理的唯一标准”,请同学们用手中的纸折一折,一起来验证一下到底谁对谁错。开始。

  注意通过展示学生的折纸过程,引导学生观察算式()+()的通分过程,明确()+()=()=()是错误的,感受异分母分数加减法不能将分子分母直接相加减。

  师:在做异分母分数加减法,为什么不能直接将分子、分母直接相加或相减呢?

  出示小数加法算式“4.21+5.3”,提问:“可不可以将百分位上的1加上十分位上的3”感受为什么异分母分数加减法不能直接将分子、分母相加。

  师:可不可以将百分位上的1加上十分位上的3?

  生1:不可以。因为相同的数位没有对齐。

  生2:小数点没对齐。

  师:小数点没对齐也就是什么没对齐?——数位没对齐

  师:数位不同也就是什么不同?(计数单位)

  师:也就是说当单位不同时不能直接相加减。我们在来看这道分数题,他们的什么不同?(分母),分母不同,也就是??(分数单位不同),可以直接相加减吗?(生:不可以。)

  师:通过大家的交流,现在大家明白在做异分母分数加减时为什么不能直接将分子、分母相加、减的原因了吗?

  4、小结算理

  谁来说究竟该怎样计算异分母分数的加法呢?

  生汇报:先要通分,(也就是统一分数单位),把异分母的分数变成分母相同的分数,再计算,计算结果能约分的要约成最简分数。

  )迁移应用,巩固提高

  1.迁移应用,解决减法问题:

  1/2-1/4=

  2.完成“试一试”

  出示试一试的+与-,再次为学生提供尝试机会。

  (学生练习后全班回馈交流,并规范书写格式。)

  四、总结规律,内化提升

  师:通过刚才的学习,你发现异分母分数加减法应怎样计算?

  生:异分母分数加减法要先通分,化成同分母分数加减法,再加减。(随着学生汇报教师板书):异分母分数通分转化同分母分数

  五、作业布置

五年级数学教案5

  学习目标

  1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

  2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣

  学情分析重点、难点:

  在现实情景中理解正负数及零的意义。

  易混点、易错点:感受用正数和负数来表示一些相反意义的量

  学生认知基础:生活中见到过负数。

  时间分配学20讲10练10

  教法学法

  自主探索法,练习法,讲授法。

  教学准备

  第一课时

  一、自学例1

  1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。

  2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

  3、上海和北京的气温一样吗?不一样在哪儿?

  4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?

  二、自学例2

  1、了解海拔的意义。

  2、思考从图上你知道了什么?

  3、试着用今天所学的知识来表示这两个地方的海拔高度。

  学生活动教师助学课后改进

  第一课时

  第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1

  (1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。

  (2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

  (3)上海和北京的气温一样吗?不一样在哪儿?

  (5)那你知道在数学上是怎样区分和表示这两个不同的温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)

  第三板块:正数和负数的读、写方法。

  根据课本要求,记住读写方法。

  学生看温度计,选择合适的卡片表示各地气温。

  第三板块:交流学习例2

  交流:从图上你知道了什么?

  交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

  共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;比海平面低155米,通常称为海拔负155米,可以计作﹣155米。

  学生根据今天所学知识把这些数分类。

  正数都大于0,负数都小于0。

  先指名读一读,再用正数或负数表示图中数据。

  先读一读,再说说这些海拔高度是高于海平面还是低于海平面。

  一:教学例1

  1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。

  根据学生的预习,共同学习交流认识新知。

  (4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。

  2.教学正数和负数的读、写方法。

  “+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。

  3.指导完成“试一试”。

  (卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)

  二:教学例2

  1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的`最新海拔高度。

  2.出示例2中珠穆朗玛峰与吐鲁番盆地的海拔高度图。

  三:初步归纳正数和负数。

  ⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?

  ⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;而0既不是正数,也不是负数。

  ⑶提问:正数、负数和0比一比,它们的大小关系怎样?

  四:练习

  做“练一练”1,2题

  2.做练习一第1题。

  3.做练习一第2题。

  4、练习一4、5、6题。

  五:作业

  练习一第3题。

  交流认识新知。

  正数和负数的读、写方法。

  根据课本要求,记住读写方法。

  交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

  正数、负数和0比一比,它们的大小关系怎样?

  正数都大于0,负数都小于0。

  课后反思

  得:

  首先,对教材的编排作了重新的审视。在教材编排中,我们可以观察到,在学习负数的过程中,学生更多的是经历“具体情境中的数——解释数的意义”这样的过程。在教学中我设计了通过观察生活中的盈亏、收支、增减及朝两个相反的方向运动中应用负数进一步理解负数的意义,明白用正负数可以表示一些具有相反意义的量,从而让学生体验负数产生的原因,接着引导学生列举生活中正负数应用的实例。

  失:

  《认识负数》单元的教学看似简单,教起来似乎觉得轻松,学生学习起来也看似轻松,可在解决实际问题的时候,却会发现有各种各样的问题出现。

  由于正负数表示的是相反意义的量,如何帮助学生正确的解决实际生活情境下的正负数问题,这是值得我们在教学中进行思考的问题。由于问题的存在,不得不想一些办法去解决这样的问题。

五年级数学教案6

  教学目标:

  1、理解两个数的公倍数和最小公倍数的意义。

  2、探究找公倍数的方法,会利用列举法找出两个数的公倍数和最小公倍数。

  3、培养学生自主探究的精神和观察、分析、概括的能力;让学生体会数学与生活的紧密联系,树立学好数学的信心。

  教学重点:理解两个数的公倍数和最小公倍数的意义。

  教学难点:探究找公倍数和最小公倍数的方法。

  教具准备:多媒体课件

  教学过程

  一、创设情境

  教师谈话:,乐乐就放假了,很想爸爸妈妈带她出去玩。可乐乐的妈妈从七月一日起每工作3天休息一天,爸爸从七月一日起每工作5天休息一天,他们打算等爸爸妈妈同时休息时,全家一块儿去西湖公园玩。(出示:七月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?

  请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找乐乐妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出乐乐爸爸和妈妈共同的休息日了。

  根据学生的回答,教师逐步完成以下板书:

  妈妈的休息日:4、8、12、16、20、24、28

  爸爸的休息日:6、12、18、24、30

  他们共同的休息日:12、24

  其中最早的一天:12

  二、尝试探讨

  1、几个数的公倍数和最小公倍数的概念教学

  我们一起来看妈妈的休息日,把这些数读一读(学生读数),你发现这些数有些什么特点?

  师:对了,这些数都是4的倍数。(教师顺势把板书中“妈妈的休息日”改成了“4的倍数”。)

  师:刚才我们是在30以内的数中,依次找出了这些4的倍数,如果继续找下去,4的倍数还有吗?有多少个?(学生举例,教师在4的倍数后面添上了省略号。)

  我们再来看“爸爸的休息日”有什么特点?6的倍数有多少个?(把“爸爸的休息日”改成“6的倍数”并添上省略号)

  师:下面我们再来看“他们共同的休息日”,这些数和4、6有什么关系?

  师:对了,这些数既是4的倍数,又是6的倍数,你能给它一个新的名字吗?(把板书中“他们共同的休息日”改为“4和6的公倍数”。)

  师:刚才我们从30以内的数中找出了4和6的公倍数有12、24,如果继续找下去,你还能找出一些来吗?可以找多少?(学生举例,老师根据学生回答,在后面添上省略号。)

  师:这“其中最早的一天”,我们一起给它起个名字,叫什么?

  (根据学生回答,把板书中“其中最早的一天”改为“4和6的最小公倍数”。)

  板书:

  4的倍数:4、8、12、16、20、24、28、……

  6的倍数:6、12、18、24、30、……

  4和6的公倍数:12、24、……

  4和6的最小公倍数:12

  教师谈话:4的倍数、6的倍数、4和6的公倍数、最小公倍数,我们还可以用这样的图来表示:

  出示集合图:

  4的倍数6的倍数4的倍数6的倍数

  4和6的公倍数

  三、深化概念

  师:通过找“共同的休息日”,我们分别求出了这组数的公倍数和最小公倍数。

  请同学们把书翻到51页看例子,填一填

  师:什么是公倍数?

  生:两个数公有的倍数就是他们的`公倍数。

  师:公倍数有多少个?

  生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。

  师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?

  生①:举例:2、4和5的公倍数是20。

  生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。

  师:那你能找出最大的或最小的公倍数吗?

  生:没有最大的,只有最小的。

  师:为什么?

  生:因为公倍数的个数是无限的,所以没有最大公倍数。谁能用自己的话说一说什么叫公倍数?什么叫最小公倍数?

  板书:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

  这就是我们今天要学习的内容。(揭示课题:最小公倍数)

  师:那么我们刚才是怎么找出最小公倍数的呢?

  生说,师写(列举法)

  [点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。]

  4.[出示]找最小公倍数

  2和69和186和245和353和9

  3和57和54和99和11

  让学生找出每组数的公倍数。

  师:有的同学找得很快,能给大家说一说你的方法吗?你发现了什么?

  小组讨论,之后汇报。

  生:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。

  生:2和6的最小公倍数是12,并不是它们的乘积。

  生:大数要是小数的倍数,大数就是它们的公倍数,而且是最小公倍数。例如2和6,9和18,最大的数都是它们的最小公倍数。

  师:你们还能发现了什么?

  生③:第二排每一组都是互质数。例如3和5两个数是互质数。互质数的最小公倍数是它们的乘积。

  师总结

  师;你们能举一些这类的例子吗?

  5、请同学们用刚才的发现做书本52页的第3题,求下面各组数的最小公倍数

  3和610和83和95和46和59和42和76和8

  [点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。]

  四、利用最小公倍数解决生活问题,

  出示:

  (1)“五(1)班同学参加植树劳动,按6人一组或8人一组都正好分完。五(2)班参加植树的至少有多少人?”

  齐读两次,找出题中的关键字,引导中理解题意后放手让生自己完成,同桌间比对。

  (2)人民公园是1路和6路汽车的起点站。1路汽车每3分钟发车一次,6路汽车每5分钟发车一次。这两路汽车同时发车以后,至少再过多久又同时发车?

  (设计理念:借助于生活实例进行对知识的应用,这样不仅可以让生对抽象概念得以理性认识,而且也能切身的体会到数学知识是为生活服务的,在分析中我紧抓关键字突破难点,这样可以让生学会解决问题的技巧。)

  五、小结

  今天学习了什么内容?什么叫最小公倍数?

  我们今天学习了求最小公倍数的哪几种情况?

  怎样才能很快地求出它们的最小公倍数?

  板书:找最小公倍数

  一般关系列举法

  倍数关系较大数

  特殊关系

  互质关系两数的乘积

五年级数学教案7

  教学目标

  知识与技能:

  明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

  过程与方法:

  能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  情感态度与价值观:

  渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

  教学重难点

  教学重点:

  在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

  教学难点:

  根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

  教学工具

  多媒体设备

  教学过程

  教学过程设计

  1 创设情境,引导探索

  师:生活中有许多图形,老师今天准备了4幅,大家观察一下,这些图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?

  图一

  图二

  图三

  图四

  课件逐一出示图一、图二、图三,图四让学生发表意见。

  生1:小房子的表面是由一个三角形和一个正方形组成的。

  生2:风筝的面是由四个小三角形组成的。

  生3:队旗的面是由一个梯形和一个三角形组成的。

  生4:七巧板是由三角形,长方形,正方形和平行四边形组成的。

  师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?

  生1:由两个或两个以上的图形组成的是组合图形。

  生2:有几个平面图形组成的图形是组合图形。

  师小结:组合图形是由几个简单的图形组合而成的。

  图一:是由三角形、长方形、加上长方形中间的正方形组成的,

  面积= 三角形面积+长方形面积-正方形面积

  图二:作辅助线使它分成一个大梯形和一个三角形。

  方法一:分割法:将整体分成几个基本图形,求出它们的面积和。

  是由两个梯形组成的。

  师:为什么要分成两个梯形?怎样分成两个梯形?

  引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。

  师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计算。

  (板书:转化)

  大家想想,用辅助线的方法还有不同的作法吗?

  方法二:添补法:用一个大图形减去一个小图形求出组合图形的面积。

  作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形

  图三:是由四个三角形组成的。

  面积 = 三角形面积+三角形面积+三角形面积+三角形面积

  2 新知探究

  (一)右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

  ( 三角形+正方形 )

  右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

  ( 两个完全一样的梯形)

  (二)计算组合图形的面积,一般是把它们分割成基本图形,如长方形、正方形、三角形、梯形等,再计算它们的面积。

  3 巩固提升

  (一)这是学校教学楼占地的面积平面图,你能用几种方法求出它的面积?

  (二)一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的'盒子。这张硬纸板还剩下多大的面积?

  (三)下面各个图形可以分成哪些已学过的图形?

  (四)学校要油漆60扇教室的门的正面。(单位:米)需要油漆的面积一共是多少?

  (五)求下列图形中阴影部分的面积。

  (六)求下列图形中阴影部分的面积。

  (七)如图,有两个边长是200px的正方形放在桌面上,求被盖住的桌面的面积。

  课后小结

  (一)学生总结

  这节课你学习了什么?有什么收获?还有什么不明白的地方?(小组说--组内总结--组间交流)

  (二)教师总结

  今天我们认识了组合图形,并能将组合图形分割成已经学习过的图形,计算出它的面积。

  板书

  组合图形的面积

  组合图形是由几个简单的图形组合而成的

五年级数学教案8

  《折线统计图》

  知识背景和目标定位:

  《折线统计图》是在学生已经掌握了收集,整理数据并制成统计表(单式和复式)和条形统计图(单式和复式)来表示统计结果,并能根据统计图表解决简单的实际问题,了解了统计在现实生活中的意义的基础上了解和掌握的一种新的统计图。

  基于以上认识,把《折线统计图》的教学目标定位于以下几点:

  1、认识折线统计图,并知道其特征。

  2、能从折线统计图中发现数学问题,同时能够依据数据变化的特征进行合理的推测。

  3、通过对数据的简单分析,进一步体会统计在生活中的意义和作用

  教学设计:

  一、创设情境

  1、课件出示相山公园图片

  师:知道这是哪儿吗?看到这些画面你想说点什么?

  预设生:人多、人山人海………

  2、由统计表提出问题

  师:是的,浏览的人真得很多,为了使大家能更清楚地了解和分析这几年浏览相山公园的`人数的情况,你认为可以用哪些方法来表示人数?

  预设生:统计表,条形统计图……

  仔细观察,你能从统计表中知道些什么?

  学生回答

  师:老师这儿还带来了一个问题,在相邻的两个年份()年到()年浏览人数增加最快?(课件出示)

  质疑:我们能不能不计算,换一种方式就可以很直观地看出()年到()年人数增加最快?

  出示条形统计图,提问:这幅统计图是用什么表示每年浏览的人数?这也不能很直观的看出哪年到哪年人数增加最快.

  师:我在公园里还看到这样一幅统计图(出示折线统计图)

  二、探究新知

  1、初步感知:

  师:在这幅统计图中,横轴代表什么?纵轴代表什么?

  每一年的浏览人数在这幅统计图中都能找到吗?

  这幅统计图是通过什么来表示每年的浏览人数的?(点)师板书:点

  2、深入探究

  带着三个问题来研究折线统计图

五年级数学教案9

  学生独立分析数量关系,并列式计算,并独立尝试画线段图。

  指名板演后说一说为什么用减法计算。

  总结:要求格尔木到拉萨的铁路长多少千米,就要从西宁到拉萨的铁路全长中去掉西宁到格尔木的铁路长;而要求西宁到格尔木的铁路长多少千米,就要从西宁到拉萨的铁路全长去掉格尔木到拉萨的铁路长。

  请观察以上两道问题与之前第(1)题有什么联系?

  总结:第(1)题实际是已知两个数,求它们的和是多少,做加法;而(2)(3)题是已知两个数的和与其中的一个加数,求另一个加数,做减法。

  想一想:减法是一种怎样的运算。

  总结:已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。在减法中已知的和叫做被减数,其中的一个加数叫做减数,所求的另一个加数叫做差。

  2、探究加、减法各部分间的关系

  你能说一说加法和减法各部分之间的关系吗?

  小组讨论后汇报交流,教师并板书。

  你觉得加法和减法之间有什么关系?用一句话来概括。

  教师总结:减法是加法的逆运算。

  三、巩固发散

  1、根据加、减法之间的关系,写出下面算式对应的两道减法算式。

  125+346=471

  34+595=629

  654+528=1182

  2、独立完成P3做一做,说一说你是怎么想的。

  四、评价反馈

  说一说你有什么收获。

  板书设计:

  加、减法的意义和各部分间的`关系

  814+1142=1956(千米)1956—1142=814(千米)

  1956—814=1142(千米)

  加法:把两个数合并成一个数的运算减法:已知两个数的和与其中的一个加数,求另一个加数的运算

  和=加数+加数差=被减数—减数

  加数=和—另一个加数减数=被减数—差

  被减数=减数+差

  沪教版四年级下册《四则运算》数学教案

  沪教版四年级下册《四则运算》数学教案

  教学目标:

  知识与能力:

  复习四则运算。

  过程与方法:

  通过复习四则运算,进一步提高学生的计算能力。

  情感态度价值观:

  培养学生认真、仔细的做题习惯和检查习惯。

  教学重点:

  通过复习四则运算,进一步提高学生的计算能力。

  教学难点:

  通过复习四则运算,进一步提高学生的计算能力。

  教学准备:

  学生练习本。

  教学过程:

  一、口算练习

  巡视学生练习情况,集体校对。

  做口算练习第一页上的1。

  二、情境引入

  学习有关奥运的知识。

  (出示贺年卡)谈话:这是老师在假期收到的贺年卡,你认识它吗?(福娃)

  说说有关“福娃”的知识

  三、四则运算练习

  1、提问:

  你想了解更多奥运知识吗?

  正确计算结果就有答案了!

  学生同桌说说运算顺序,再独立计算。

  1。没有括号的计算题。

  出示:

  2630—867+133

  581—31×18

  做完自觉复习

  2。有括号的计算题。

  (158+125)×2

  196÷(712—698)

  456÷19×83

  交流自己检查的方法。

  3。小结计算顺序并练习。

  组织学生集体校对答案。

  齐读奥运知识

  2、将答案填入书本第一页,全班一起朗读有关奥运知识。

  3、你们还想了解吗?

  33×(225÷15)

  944÷(105—89)

  1210÷(89+21)

  2112÷(16×3)

  134×16÷67

  1300×(700÷10)

  组织学生集体校对答案。

  学生同桌说说运算顺序,再独立计算。

  做完自觉复习

  交流自己检查的方法。

  齐读奥运知识

  将答案填入书本第一页,全班一起朗读有关奥运知识。

  四、课堂总结

  归纳:四则运算的顺序是怎样的?我们要注意什么?

  指名回答问题

  板书设计

五年级数学教案10

  一、准备练习

  (一)口算

  3.8+1.2 2.54 1.58

  1.50.3 0.64+0.16 7.6+0.24

  5-1.8 1.2580 3.64

  6.3+2.45+3.7 3.56-1.57-0.43

  0.87125 (2.5+0.9)4

  (1.5+0.25)4 0.64+1.44

  (二)口答,在□里填上适当的数.(说出依据)

  1.3.18□=1.2□

  2.(2.5+3.5)□=□□○□4

  3.□+4.3=□+0.86

  4.(2.51.2)□=1.2(□□)

  5.7.6-2.8-□=□-(□+3.2)

  (三)小结引入

  我们运用一些运算定律或者运算性质可以使计算简便,在四则混合运算中,能不能运用这些运算定律和性质,使计算简便呢?

  二、讲授新课

  (一)教学例4

  1.82.58+1.81.42

  1.观察算式特点

  2.学生试做

  方法一:1.82.58+1.81.42 方法二:1.82.58+1.81.42

  =1.8(2.58+1.42) =4.644+2.556

  =1.84 =7.2

  =7.2

  3.观察比较:两种方法哪一种计算起来比较简便?

  (第一种方法应用乘法分配律来计算,第二种方法只是根据一般的`运算顺序)

  4.练习

  1.82.58+1.81.42+0.5

  =1.8(2.58+1.42)+0.5 (乘法分配律)

  =1.84+0.5

  =7.2+0.5

  =7.7

  5.小结

  通过刚才的练习,你对简算有什么新的认识?

  三、巩固练习

  (一)计算下面各题

  1.561.7+0.441.7-0.7

  11.72-7.85-(1.26+0.46)

  (二)计算下面各题,能用简便算法的用简便算法

  10.64+7.652.4+11.76

  12.9〔14.66-(1.3+8.2)〕

  9.83(3.8-2.3)+1.56.17

  6.752-〔4.7(0.54-0.38)+2.8〕

  15.4〔8(6.34-4.59)〕

  (三)思考题:填同一个数

  □-□+□+(□□□-□)=10

  四、课堂小结

  在四则混合运算中,有时虽然不能把整个题目简便计算,但是应该随时注意是不是有的步骤可以简算,能简算的,尽量使计算简便,不能简算的再按运算顺序计算.

  五、课后作业

  (一)计算下面各题,能用简便算法的用简便算法.

  1.10.64+7.652.4+11.76

  2.12.75[14.6-(1.3+8.2)]

  3.9.831.5+6.171.5

  4.15.4[8(6.34-4.59)]

  (二)新兴煤矿七月份产煤4.85万吨,八月份产煤5万吨,九月份产煤5.65万吨.平均每月产煤多少万吨?

五年级数学教案11

  一、说教材

  1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》

  2、教材分析:

  随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。

  3、教学重、难点:求平均数说课稿

  平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的难点。

  4、教学目标

  在学生计算出平均数的基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:

  知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。

  能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。

  情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。

  二、说教法:

  “求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。

  三、说学法:

  在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。

  四、说教学过程:

  五年级下册数学平均数的再认识教学设计

  教学内容 平均数的再认识

  教学目标

  1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。

  2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。

  3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。

  教学重点

  难点 掌握求平均数的方法。

  体会平均数在实际生活中的应用。

  教具准备:多媒体

  教学课时:1课时

  教学过程

  一、情境引入。

  1、出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的'儿童免费乘车。1.2米这个数据是如何得到的呢?

  2、学生质疑,说一说你的看法。

  二、新授。

  1、解决疑惑。

  学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。

  出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。

  2、求平均数的方法。

  出示:“新苗杯”少儿歌手大奖赛的成绩统计表。

  评委1 评委2 评委3 评委4 评委5 平均分

  选手1 92 98 94 96 100

  选手2 97 99 100 84 95

  选手3 90 98 87 85 90

  (1)把统计表填写完整,并排出名次。

  (2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?

  (3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。

  3、教授解题策略。

  题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。

  求平均数的方法:总数量÷总份数=平均数。

  选手1:(92+98+94+96+100)÷5=96(分)

  选手2:(97+99+100+84+95)÷5=95(分)

  选手3:(90+98+87+85+90)÷5=96(分)

  4、计算完毕请补充统计表,并排出最终名次。

  板书设计

  平均数的再认识

  平均数的意义。

  求平均数的方法:总数量÷总份数=平均数。

五年级数学教案12

  教学目标

  (一)通过教学,学生能比较正确地计算分数加、减混合运算的式题。

  (二)在教学中,培养学生仔细、认真的良好学习习惯。

  (三)培养学生对比、观察的能力。

  教学重点和难点

  分数加、减混合运算的计算方法;带有小括号的分数加、减混合运算。

  教学用具

  教具:小黑板,投影片。

  教学过程设计

  (一)复习准备

  1.教师:整数加、减混合运算的运算顺序是什么?

  2.计算下面各题:

  教师:分数连加、连减为什么可以一次通分再计算?

  (二)学习新课

  尝试计算例1。

  通过订正找出简便的计算方法。

  教师:

  ①分数加、减混合运算的'顺序和整数加减混合运算的顺序相同吗?

  ②例1与准备题比较哪相同?哪不同?(讨论)

  ③怎样计算比较简便?

  板书:

  明确:分数加、减混合运算与整数加、减混合运算顺序相同,为了简便,几个分数可以一次通分,然后按照运算顺序依次进行加减计算。

  说明:虚线框的部分,我们在计算带分数加减混合运算时,可以按照这样的方法去想,但在做题时这一过程可以省略不写,而直接写出计算结果。

  教师:计算结果要注意什么问题?

  教师:①先算什么,再算什么?

  ②分两步计算,是一次通分好,还是分步通分好呢?

  学生尝试计算并订正。

  教师:①怎样计算简便?

  ②为什么分步通分简便一些?

  说明:虚线框的通分过程,以后计算熟练了可以不写,或写在草稿纸上,也可以直接写出结果,不断提高自己的计算能力。

  教师:结果要注意什么?

  (三)巩固反馈

  1.做一做。

  2.判断正误并说明理由。

  3.按照下图的计算步聚列出综合算式,并算出得数。

  4.思考题:

  华和王英比,谁高一些?高多少米?

  (四)课堂总结

  分数加减混合运算的运算顺序,和整数加减混合运算顺序相同。为了简便,几个分数可以一次通分,然后按照运算顺序依次进行加减计算。如果有小括号,用分步通分的方法比较简便。

  教师:计算分数加减混合运算应该注意什么问题?

  最后结果要化为最简分数。

  (五)布置作业课本140页练习三十一,1,2。

  课堂教学设计说明

  这部分内容是在学生掌握了分数加、减法计算方法的基础上教学的。一方面把整数加减混合运算的运算顺序推广到分数加减混合运算;另一方面,为学习小数、分数加减混合运算做好准备。通过学生亲身尝试,学生发现分数加减混合运算的计算方法,并且掌握灵活通分的方法。借助准备题与例1的对比,学生自己学会了新知,培养学生对比和分析问题的能力,同时也培养了学生认真计算、检查的良好学习习惯。

五年级数学教案13

  教学目标

  1.通过教学使学生在旧知识的基础上,进一步认识用字母表示运算定律和计算公式.

  2.理解用字母表示数的意义.

  3.知道一个数的平方的含义及读写法,学会在含有字母的式子里简写和略写乘号.

  4.使学生学会应用字母公式求值.

  教学重点

  用字母表示运算定律和公式;根据字母公式求值.

  教学难点

  理解一个数的平方的含义,乘号的简写和略写.

  教学过程

  一、铺垫孕伏

  (一)在下面的□里填上适当的数,并说明根据什么.

  18+34=34+□

  (35+55)+45=357+(□+□)

  35×□=59×□

  (1.2×2.5)×4=1.2×(□×□)

  (4+8)×□=□×3.5+□×□

  二、探究新知

  (一)教学用字母表示运算定律.

  1.学生叙述各运算定律的内容,并用字母公式表示出来.

  教师板书

  (1)加法交换律:

  (2)加法结合律:

  (3)乘法交换律:

  (4)乘法结合律:

  (5)乘法分配律:

  2.观察比较:用字母表示运算定律比用文字叙述有哪些优点?

  优点:用字母表示运算定律比用文字叙述运算定律更简明易记,也便于应用.

  (二)教学用字母表示计算公式.

  1.教学用字母表示图形面积公式(出示图片:图形面积公式)

  (1)表示正方形的面积,表示正方形的边长.

  (2)表示平行四边的面积,、分别表示平行四边形的底和高.

  (3)表示三角形的面积,、分别表示三角形的底和高.

  (4)表示梯形的面积、、分别表示梯形的下底和高.

  2.教学一个数的平方的含义及正方形周长的书写格式.

  (1)读出下面各式,并说明表示的意义.

  (2)把下面各式写成一个数的平方的形式.

  5×5

  (3)省略乘号,写出下面各式.

  (4)根据运算定律在□填上适当的字母或数.

  (□+□)+□

  □·(□·□)

  (5)如果用表示长方形的长,表示宽,那么

  这个长方形的面积_____________________,

  这个长方形的周长_____________________.

  教师小节:在含有字母的式子里,乘号可以省略,但加号、减号、除号都不能省略,如:

  不能写成;在两个数相乘的时候,乘号不能省略不写,可以改为“·”,但容易与小数点混淆,所以一般仍记作“×”.

  3.教学例1.

  例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.

  教师说明:在我们计算一个图形的面积或周长时,实际上是把数值代入有关的公式,算

  出的结果就是它的'面积或周长.

  (1)说出梯形的面积公式.

  (2)说出梯形面积公式中每一字母表示的意义.

  (3)说出字母所代表的数值.

  (4)学生尝试解答.

  教师强调:在利用公式进行计算时,计算的结果不必写出单位名称,只在答题时注明就行了.

  (5)练习:一个长方形的长是8.4厘米,宽是4.6厘米,它的周长是多少厘米?

  三、课堂小结

  今天这节课学习了什么知识?

  四、课后作业

  (一)已知一个三角形的底是3.8分米,高是1.5分米.求这个三角形的面积.

  (二)先写出下面图形的周长和面积的计算公式,再把数值代入公式计算.

  1.一个长方形,长7.2厘米,宽1.8厘米.

  2.一个正方形,边长24毫米.

  五、板书设计

  用字母表示运算定律和计算公式

  运算定律

  计算公式

  可以写成

  读作:的平方

  表示:两个相乘

  例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.

  =(3.5+5.5)×4÷2

  =9×4÷2

  =18

  答:梯形的面积是18平方厘米.

  探究活动

  找规律

  活动目的

  1.能正确用含有字母的式子表示数量.

  2.培养学生的抽象思维能力和概括能力.

  活动题目

  仔细观察,发现规律,得出结论,然后填空.

  35=3×10+5702=7×100+0×10+2

  72=7×10+2123=1×100+2×10+3

  16=1×10+6564=5×100+6×10+4

  …………

  1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是().

  2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是().

  数学教案-用字母表示运算定律和公式

  活动过程

  1.学生分小组讨论.

  2.汇报思考过程和答案.

  3.仿照题目类型,每个小组自编一组练习,相互交换解答.

  参考答案

  1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是(10a+b).

  2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是(100a+10b+c).

五年级数学教案14

  教材说明

  综合应用“量一量找规律”是在完成了第四单元“简易方程”的教学之后安排的,旨在让学生综合运用所学的测量、统计和方程等方面的知识,通过动手操作揭示事物之间的内在规律,激发学生学习数学的兴趣,在培养学生实践能力的同时培养学生归纳推理的思维能力。

  “量一量找规律”活动由以下四部分组成。

  1.自制实验工具。

  学生在充分理解方程意义的基础上,利用皮筋、木棒、盘子和细绳等材料小组合作制作一个简易秤。具体的做法是用细绳将盘子拴住做成一个托盘,然后用皮筋分别将托盘和木棒拴住。

  2.收集实验数据。

  学生利用自制的简易秤,依次称量1本、2本、3本等不同数量的课本,在统计表中记录称量的课本数和相应的皮筋总长度,并计算出每增加一本书皮筋伸长的长度。

  3.分析数据。

  引导学生观察统计表中的信息,并根据表中的数据绘制折线统计图,启发学生讨论从统计图表中能够获得哪些信息。

  4.根据统计结果归纳推理。

  根据统计图表的结果小组合作探究皮筋长度和课本数二者之间存在的规律及此规律适用的范围。

  整个活动不仅使学生经历从收集实验数据、数据、制成统计图表到根据统计结果推理事物之间内在本质关系的全过程,而且促使学生进一步体验运用所学知识探究未知事物的乐趣。

  教学建议

  1. 这部分内容可用1课时进行教学。

  2. 这个活动是一个操作性很强的活动,教学时可采用小组合作的形式放手让学生尝试,充分调动学生自主探索的积极性,教师只在关键处予以一定的引导和点拨。

  3.在制作实验工具部分,教师可提前布置学生准备制作材料,并引导学生思考:对制作简易秤使用的橡皮筋和木棒有什么具体要求,启发学生选择弹性较好的橡皮筋,至少在称量6本数学书时不会超出弹性限度或发生永久变形;选择的木棒要尽量做到长度适中、粗细均匀,在称量时不会弯曲、变形。此外,拴盘子时要注意拴的角度和拴绳的长度,使托盘在称量时保持水平、稳定。当然,教师也可根据情况灵活安排,如可用弹簧来代替橡皮筋,在制作时用铁钩等代替木棒达到称量的目的。

  4.在收集实验数据部分,教师可在实验之前要求学生先明确书本第77页中统计表中要求采集的信息,并引导学生讨论测量过程中应该注意的事项。例如,要明确测量的'起点和终点;测量皮筋长度时要等橡皮筋和秤盘均处于稳定状态时再测;称量时要设法使木棒保持水平……这样得到的数据误差较小。具体实验的实施可采取小组分工合作的形式。

  5.在分析数据部分,教师根据统计表绘制出折线统计图,引导学生仔细观察统计图表,想一想统计图表呈现的特点,并讨论它们传达出的信息。然后,对应统计图表,请小组同学互相说一说:“如果要称量7本书,皮筋会伸长多少?8本呢?10本呢?”

  6.在根据统计结果归纳推理部分,老师引导学生思考皮筋长度和课本数二者之间存在的规律,向学生初步渗透函数的。如果有的小组实验数据与理论上y=a+bx(a代表皮筋原长,b代表每增加一本书皮筋伸张的长度)的关系存在一定误差,老师可引导学生分析原因,也可向学生客观说明。

  7.在学生出二者之间存在的规律后,老师还可进一步启发学生思考“如果要称量的课本越来越多的话,皮筋会发生什么变化”,帮助学生理解上述二者的关系均是建立在皮筋的弹性限度之内的,反之,二者的关系不存在。

五年级数学教案15

  教学目标

  1.通过直观的操作活动,理解异分母分数加减法的算理。

  2.能正确计算异分母分数的加减法。

  教学重点

  异分母分数加减法的计算法则。

  教学难点

  把分母不同的分数通过通分化成分母相同的分数。

  教具、学具

  学生准备几张用来折纸的纸张。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  1、复习引题

  1.在三年级时我们就已经学过了同分母分数加减法,大家还记得怎么计算吗?

  2、先看书上的折纸活动

  师:要知道他们两个人一共用了这张纸的几分之几?要怎样列式

  3、新授

  1.估一估他们用了这张纸的几分之几?

  2.再算一算他们用了这张纸的几分之几?

  3.重点教学加的计算教师引导学生理解要先通分然后才能计算的算理。

  口算。

  2/7+3/7=5/6+1/6=

  13/14-3/14=

  1/12+5/12=

  同桌的两个同学也像那两个同学一样折一折纸,并列出算式:

  1/2+1/4=

  通过折纸来估计

  小组讨论书上两幅图的`计算方法,理解通过通分把异分母分数化成同分母分数就是解决异分母分数不能相加减的办法。

  回忆同分母分数加减法的计算方法。

  通过折纸学生直观的认识到异分母分数加减计算的学习必要性。

  通过折纸活动让学生理解不是简单分母与分母,分子与分子的相加。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  4.总结异分母分数加法的计算法则。

  5.自学异分母分数减法

  学生自学,教师巡回指导。

  4、巩固练习

  Ρ65练一练

  5、全课总结

  学生讨论刚才的计算方法,并总结:异分母分数相加,要先通分,化成同分母分数,再把它们相加。

  学生自己看书学习

  第(2)题小红比小明多用了这张纸的几分之几?

  根据加法的法则自己总结法则。

  学生独立完成第1题教师指名回答说说是怎么想的

  培养学生总结归纳知识的能力。

  在独立探索中掌握异分母分数减法的计算方法。

  学习知识的归纳总结

  板书设计:折纸

  异分母减法的计算方法:

  分母不相同的分数相加减,要先通分,化成相同的分母,再加减。

  练习