
- 分数的意义教案 推荐度:
- 分数的意义教案 推荐度:
- 相关推荐
【热门】分数的意义教案
在教学工作者开展教学活动前,通常需要准备好一份教案,教案有利于教学水平的提高,有助于教研活动的开展。那么优秀的教案是什么样的呢?以下是小编为大家收集的分数的意义教案,欢迎阅读与收藏。
分数的意义教案1
教学准备:
教学目标:
1、复习、本单元的基本概念,在练习中进一步理解分数的意义。
2、通过输理、比较,建立相关概念的关系。
3、在实践应用中体验数学的趣味性。
基本教学过程:
一、一、基本练习
1、分数的意义。
练习第一、二题。
学生填写后,说说思考方法。巩固对分数意义的理解。其中第二题的2/3,可以让学生说说还可以用什么分数表示。
2、分数的大小比较:
第3题。
先让学生独立填一填,再说一说比较分数大小时是怎样思考的?注意,本题是让学生用分数表示没有涂色的部分。
3、假分数、带分数的互化:
第5题。
说一说假分数、带分数互化的方法:
4、填符号:
第6题。
说一说你是怎么想的`?
二、运用知识模型:
1、第7题。
按要求在圈内填上适当的分数。
2、第4题。
先引导学生解决第1问题,学生根据题意收集有关信息,再根据分数的意义或分数与除法的关系解决问题。
然后引导学生说说“还能用分数表示什么?”如站着的人数占这群学生数的几分之几,男生的人数占这群学生数的几分之几等。第3个问题,主要用分数进行交流,感受分数与生活的联系,教师组织学生展开充分交流。
3、第8题
教师可以引导学生观察年历卡片,可以让学生根据年历自己数一数,再得出结论,加深对分数的理解。在完成教材的前两个问题后,教师要充分利用年历卡片这个学习材料引导学生用分数进行交流。
三、实践活动:
课前可以组织学生简要设计一张数学报,自己想一想各栏目所占幅约占这张报的几分之几,再在课堂上进行交流,培养学生的数感,体会分数的应用。
四、:
教学反思:
分数的意义教案2
教学内容:九年义务教育六年制小学实验课本,第十册,分数意义。
教学目标:
进一步理解分数意义,通过两个分数比较大小,深化学生对分数单位的理解。
培养学生判断推理的能力。
培养学生用辩证的观点看待问题。
教学重点、难点:
重点:进一步理解分数单位。
难点:(分数单位和分数单位的个数都不同的分数进行比较。)对分数单位的
深化认识。
教学过程:
1.复检
(1)前面我们对整数的小数有了一定的认识,我们研究整数和小数这部分知识,
关键的一点是什么?(数位、计数单位、进率)整数从右边起的前三位及它们的计数单位分别是什么?
(2)我们知道整数和小数都是十进制的数,谁能说说你是怎样理解“十进制”的?
小结:今天我们就在这个基础上来研究分数。[板书:分数]
2.新授
第一层:理解分数意义,初步理解分数单位这个概念。
出示 、
(1)看到 你能想到什么?(以 为一份有这样的2份)[板书: ]
(2)“ ”表示什么?[板书: ]这儿(指 后面)应该写什么?( 、 )
(3)第二排的数都表示的是几份?(一份)
(4)第二排的数与第一排的数之间有什么关系?
(5)什么是分数单位呀?
(6)分数单位与“1”之间有什么关系?
小结:既然同学们对分数单位这么感兴趣,我们这节课就重点来研究一下分数单
位。
[评:紧扣重点,采用对比的方法,加深学生对“分数单位”的认识]
第二层:分数单位相同,分数单位的个数进行比较
出示
(1)我们观察一下这两个分数有什么特点?(分母相同)不说分母相同,还可以怎样说?(分数单位相同)分数单位相同也就是什么相同?(每份相同)[学生回答时注意前提条件]
(2)这两个分数的每份相同,也就是分数单位相同,我们看看这两个分数表示的大小相同吗?能不能比出大小?
(3)我们除了对这两个分数进行比较,还可以怎么样?(加减)
(4)进行加的结果是多少?( )12是怎么来的?什么没变?(分数单位)什么相加了?
(5)减的结果是什么?( )谁减谁?“2”是怎么来的,同样是什么没变,跟加法的道理一样不一样?
(6)在加减的过程中分母为什么没变?为什么分数单位相同可以直接相加减?
出示
问:这两个分数可以怎样?(比较、加减)
[也可将这两个分数与1进行比较]
小结:这两组数,分母都相同,也就是分数单位相同,在分数单位相同的情况下,比较两个分数的大小有什么规律?
[评:1.分母相同是外在的表面现象,教师引导学生透过现象看到分母相同,就是单位“1”相同,分数单位相同(每份相同)这样,就在“同分母分数比较大小中抓住了实质。不仅使学生掌握了比较大小的方法,更进一步理解了分数的意义,又为学习分数的计算奠定了知识和思维的基础。
2.让学生充分说理,每一个设问都给学生提供了运用概念解决实际问题的情境。如: 和 ,分母相同,说明单位“1”相同,分数单位相同。在分数单位相同的情况下,5个 比7个 小,所以 < 。这种严密的逻辑论述,体现出学生分析推理能力,对所学知识的认识又上升到了一个新的层次,培养学生逻辑思维能力,是培养创造思维的基础。]
第三层:分数单位的个数相同,分数单位的大小进行比较
出示
(1)分母还相同吗?(不同)有没有相同的地方(单位“1”相同,取的份数也相同。)
(2)谁大?( )5比7小,为什么 反而大呢?
出示:
问:观察这个分数有什么特点?请你判断一下这两个分数的大小。
小结:当单位“1”相同的`情况下,分的份越多,它的分数单位就越小,分的份
越少,分数单位就越大。刚才我们研究了两组很有规律的分数,在这个基础上我们继续看。
[评:在分数单位比较的过程中,深化的分数单位的理解,为后面的分析推理提供依据。]
第四层:发散思维的训练,深化对分数单位的理解
出示:
问:我们观察一下这两个数,有什么特点?(分数单位与分数单位的个数都不同)有没有相同的?(“1”相同)“1”相同,分数单位不同,所取的份也不同。能不能进行比较呢?讨论一下。(可先将 与 进行比较,或 与 =1进行比较,再比较这两个分数的大小;或与“1”的一半进行比较)
出示
问:这组分数同样分子和分母都不相同,看能不能向刚才这种方法一样比较一下。(先将 与 进行比较)
小结:我们刚才比较了两个分数的大小,而且当分母相同的情况下,还可以把两个分数直接相加减,无论是比较还是加减,我们研究的关键的一点都是什么?(分数单位)
[评:发散思维的活动方式是分散的、辐射的、昊散式的发散思维的训练,目的使学生灵活运用知识,使思维更活跃,在培养学生创造思维中起重要作用,教师设计的三组题,为学生创设了各显其能,施展才华的条件,学生大胆地冲破思维的局限性,从不同角度,沿着不同的方向进行思考、想象、分析、推理,使问题得到解决。如:①因为 > 所以 >
②因为 > 所以 >
③学生大胆设想,都转化成分母相同再比较,等等。
学生方法的多样性,灵活性来源于对概念理解的深刻性,这种“一题多解”、“求异思维”的能力,是学生已具有创造性学习能力的体现。]
第五层:通过假分数与带分数的互化,进一步认识分数单位,在这当中渗透分数单位与单位1之间的关系。
出示
(1)这个分数和我们前面研究的分数比较一下,有什么不同?(分子比分母大)分子比分母大,这样的分数叫假分数。(真假的假)那么我们前面研究的这些分数分子都比分母小,你们说,这些分数就应该叫什么呀?(真分数)
(2)分子比分母大说明什么?(这个数比1大)
(3) 我们就可以看作几部分?
(4) 和1 的大小一样不一样?我们就可以用什么符号连接?
小结:这两个分数所表示的意义一样吗?它们之间有什么联系?(讨论)
[评:通过假分数与带分数的互化,进一步认识分数单位,渗透分数单位与单位“1”之间的关系。这里运用观察、比较、适时的讨论,学生对假分数和带分数的意义有了正确的认识。]
3.质疑
4.总结
这节课我们研究了什么?分数单位在分数这部分知识中占有很重要的位置,这一知识我们研究得透,对于我们今后研究有关的知识会有很大的帮助。
七.板书设计
八.反思:
本节课结构严谨,重点突出,始终给基本概念“分数单位”以中心地位,知识呈现过程清晰,过程设计符合儿童认知。
以“比较分数大小”这一知识为载体,把“分数单位”这一核心概念挖掘来,在不断的深化和扩展中,学生既学了知识又为后叙知识做好铺垫,同时促进了学生思维质的发展。
教师语言简练,设问有利于激发学生的思维,学生不仅学会了知识,增长了能力,在生生相互沟通中以科学的态度对待科学知识,在民主的氛围中学生身心和谐发展。
分数的意义教案3
教学内容:
教科书第45,46页内容。
教学目标:
1、了解分数的产生,理解分数的意义。
2 、理解单位“1”的含义,认识分数单位,能说明一个分数当中有几个分数单位。
3、在理解分数含义的过程中,渗透比较,数形结合等数学思考方法,培养学生的抽象概括能力。
教学重点:
理解分数的意义。
教学难点:
理解单位“1”,认识分数单位。
教学准备:
学具:圆形,正方形,长方形,绳子等。
教具:课件,磁扣。
教学过程:
一、复习导入
1出示四分之一
老师提问:同学们,你们认识这个数吗?那你们会读这个数吗?它的各个部分(用手指一指分数个部分)分别叫什么名字?
学生思考回答、
2老师小结:看来同学们对于以前学过的知识记得还挺清楚,今天我们将要继续学习有关分数的知识。请和老师一起半数课题。板书课题:分数的意义。
二、探究、理解分数的意义。
1、操作探究
老师:请拿出你们准备的学具,认真阅读屏幕上的活动要求,开始操作。
学生动手操作,老师巡视。
2、反馈交流
老师:现在谁来说一说你是怎样表示四分之一的?
3、归纳小结,认识单位“1”
老师:同学们说的都很好。现在请同学们再次观察你们刚刚完成的这些作品,看看他们有什么相同的地方,有什么不同的地方?先自己想一想,在和同桌说一说。
学生:相同点都是平均分成了四份,取其中的一份。不同点是分得东西的总体和东西的数量不同。
老师:我们再来回顾一下我们都平均分了什么?对了,我们平均分的可以是一个物体,也可以是一些物体(板书)我们在平均分时,把这一个物体或者一些物体都看做了一个整体(板书)把这一个整体平均分成四份,其中的一份用四分之一表示。这个整体我们也可以用自然数1来表示,我们通常把它叫做单位“1”(板书)
老师:以前我们认识分数时知道:把一个物体平均分成若干份,表示其中一份或几份的数叫做分数。通过今天的'学习,你想怎样更新分数的定义呢?学生自己归纳,并找几位学生说一说。
老师:现在请同学们想一想,我们还可以把哪些东西看做单位一?
4、再次研究四分之一,四分之三。
老师;同学们,老师这里也有一幅图,可以用来表示四分之一,课件出示
现在大家能看到的正是这幅图的四分之一,你能猜到这幅图的整体是什么样子吗?
老师:这里的四分之一是把什么看做了单位一?用纸盖住的部分该用哪个分数表示呢?为什么?
5、研究几分之几。
老师:看来你们都理解了四分之一和四分之三的含义了,接下来就请你们任意写一个人数,再和你的同桌说一说这个分数表示的意义。哪位同学愿意和大家分享一下你写的分数?(用分数的意义说)
三、认识分数单位
老师:同学们都说的很不错,下面同学们打开课本46页完成做一做。
课件出示统一订正并出示分数单位的含义。
出示几个分数,让学生或说他的分数单位。
四、练习
1、48页6,7题。
2、课件拓展练习。
五、看课件了解分数的产生。
六、总结。
分数的意义教案4
重点:
(1)理解分数乘以整数的意义
(2)理解并掌握分数乘以整数的计算法则
难点:
在计算的过程中,能约分的要先约分,然后再乘。
设计思想:
发挥学生的主体作用,在独立尝试的基础上,进行同学间的广泛交流,在对比、择优、质疑的基础上,归纳分数乘以整数的意义和法则。
教学过程:
一、设疑激趣:
1.下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
2.计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法:++==33=
3=这个算式表示什么?为什么可以这样计算?
教师板书++=3=
3.出示:(课件1)
这道题目又该怎样计算呢?
二、自主探索:
1.出示例1,读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算。
三、学生交流、质疑:
1.学生汇报,并说一说你是怎样想的?
方法a.++===(块)
方法b.3=++====(块)
2.比较这两种方法,有什么联系和区别?
(联系:两种方法的结果是一样的。区别:一种方法是加法,另一种方法是乘法。)
教师根据学生的回答,板书++=3
3.为什么可以用乘法计算?
(加法表示3个相加,因为加数相同,写成乘法更简便。)
4.3表示什么?怎样计算?
(表示3个的和是多少?++====,用分子2乘3的积做分子,分母不变。)
5.提示:为计算方便,能约分的要先约分,然后再乘。
(这些质疑活动应该由学生进行,教师引导学生围绕本节课的重点进行质疑、答疑)
四、归纳、概括:
1.结合=3=和++=3=,说一说一个分数乘以整数表示什么?(求几个相同加数的'和的简便运算。)
2.分数乘以整数怎样计算?(用分子和分母相乘的积做分子,分母不变)
(根据学生的回答,教师进行板书)
五、巩固、发展
1.巩固意义:
(1)看图写算式,说出乘法算式的意义。(出示图片1、图片2、图片3)
(2)改写算式:
+++=()()
+++++++=()()
(3)只列式不计算:3个是多少?5个是多少?
2.巩固法则:
(1)计算(说一说怎样算)
462148
(说一说,为什么先约分再相乘比较简便?以8为例来说明)
(2)应用题:
a.一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
b.美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(3)对比练习:
a.一条路,每天修千米,4天修多少千米?
b.一条路,每天修全路的,4天修全路的几分之几?
3.发展提高:
(1)出示(课件1):说说怎样想?
(2)出示(课件2):说说怎样想?
分数的意义教案5
教学目的:
1.使学生理解分数除法的意义与整数除法的意义相同。
2.学会分数除以整数的计算方法。
教具准备:教师准备10个半块月饼的教具。
教学过程:
一、复习
1.举例说明整数除法的意义是什么?
2.根据乘法算式13438=5092,写出相应的两个除法算式。
3.举例说明分数乘以整数的意义和一个数乘以分数乘法的意义各是什么?
以上复习题可以指名回答。
二、新课
1.教学分数除法的意义。
教师出示5个半块月饼的教具,提问:
(1)每人吃半块月饼,5个人一共吃多少块月饼?怎样列式?得多少?
(2)两块半月饼,平均分给5人,每人分得多少块月饼?
教师出示两块半月饼,将它们平均分成5个半块月饼。要求学生按照教具的演示过程列式、计算。
(3)两块半月饼分给每人半块,可以分给多少人?
教师让学生到黑板前进行教具演示,再列式计算。
教师让学生观察、比较上面3道题中算式的已知数和得数,再回答下列问题:
(1)第一个算式已知什么?求什么?用什么方法计算?(已知两个因数: 和5,求出它们的积为 ;用乘法计算。)
(2)第二个算式呢?(已知积是 和一个因数是5,求出另一个因数是 ,用除法计算。)
(3)第三个算式跟上面哪一个算式是类似的?(跟第二个算式是类似的,也是已知积是 和一个因数是 ,求出另一个因数是5,用除法计算)
教师:分数除法的意义是什么?它跟整数除法的意义一样不一样?(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的.运算。)
2.做教科书第30页做一做中的题目。
教师让学生自己读题、做题,做完后要问学生是怎样应用乘法算式和分数除法的意义来填写除法算式的得数的?
3.教学分数除以整数。
教师出示例1:把 米铁丝平均分成2段,每段长多少米?教师:根据题意需要用什么运算来求出得数?并列出算式。(应该用分数除法来做,算式是 2。)
教师:这个算式的含义是什么? 米是几个 米?应该怎样计算?试试看。(表示把 米平均分成2段。 米是6个 米,实际上是把6个 米平均分成2份,求每份是多少米?可以列出如下的算式(教师板书)。)
教师:说一说分数除以整数可以怎样计算?(分数除以整数可以用分数的分子除以整数。)
教师:把 米平均分成2段,求每段是多少,还可以怎样计算?能不能把它转化为已学过的算法来算?(把 米平均分成2段,求每段是多少米?可以看作是求 米的 是多少米?可以用乘法计算。)
教师:把 米铁丝平均分成4段,每段长多少米?用两种方法计算。(让学生自己计算,指名两个学生板演。)
做完后,让学生讨论,就这道题来说,哪种方法可行?哪种方法不可行?为什么?
分数的意义教案6
设计说明
“百分数的意义和读写法”是在学生学习了整数、小数以及分数的基础上进行教学的,百分数与分数有着密切的联系。基于以上认识,教学设计主要突出以下几点:
1.以实际生活情境为载体,感知百分数的意义,培养学生的思维能力。
数学知识来源于生活,又服务于生活。百分数的知识与现实生活有着密切的联系,所以,在引入课题和百分数意义的教学中,教学内容的选择都要紧密联系学生的生活实际,而且通过课前对百分数的收集,使学生认识到百分数在生产、生活中的广泛应用。同时,以实际生活情境为载体,充分挖掘学生学习的潜能,使学生积极地参与到数学活动中去,培养学生的思维能力。
2.注重新旧知识的对比和迁移,体现类比的思想方法。
对比和迁移能使学生容易接受新知识,防止新旧知识混淆,提高学生的辨别能力,从而扎实有效地掌握数学知识。教学百分数的意义是在学生已掌握了分数的意义的基础上进行的,教学设计中通过与分数的意义进行对比,明确分数的意义与百分数的意义的区别,更加突出百分数的意义是表示一个数是另一个数的.百分之几的数,表示的是两个数之间的倍比关系。
课前准备
教师准备 PPT课件
学生准备 学生课前收集的生活中有关百分数的资料
教学过程
⊙情境导入
1.出示课件。
师:同学们,看了这段资料,你发现了什么?你有什么感想?
引导学生发现百分数的同时,让学生感受到我们国家的经济发展水平正在逐步提高。
师:你知道这些数叫什么数吗?还在哪些地方见过这样的数?
学生讨论后,教师明确:像上面这样的数,如14%、65.5%、120%……叫做百分数。
2.引导学生交流课前收集到的百分数的资料。
师:同学们收集到的百分数资料可真多啊!看来百分数在生产、生活中的应用非常广泛。那人们为什么喜欢用百分数?用百分数有什么好处?百分数有什么含义呢?带着这样的问题,让我们一起走进今天的数学课堂
分数的意义教案7
教学内容
教科书第1~3页例1,课堂活动第1题及练习一1~4题。
1.让学生理解百分数的意义,能正确读写百分数,知道百分数与分数的区别。
2.在学生探究数学的过程中培养学生的抽象概括能力和比较分析能力。
3.使学生感受百分数与生活的联系,体会数学的应用价值,激发学生学习数学的兴趣。
理解百分数的意义。
教具:小黑板。
学具:学生收集的生活中的百分数。
一、联系生活,引入新课
(1)学生汇报收集的生活中的百分数。
课前,老师让大家收集生活中的百分数,找到了吗?在什么地方找到的?
(2)人们在生活中为什么这么喜欢用百分数呢?这节课咱们就一起来研究。(揭示课题)你想了解百分数的哪些知识?
二、自主探索,学习新知
1.理解百分数的具体含义
(1)出示麻辣烫火锅配料成分,根据百分数信息分析麻辣原因。
辣椒占45%,花椒占38%,其他成分占17%。
教师:知道火锅为什么这么麻?这么辣吗?
(2)分析:辣椒占45%表示的意义。
分母100表示什么?45呢?
45%是什么数与什么数比较的结果?
(3)花椒占38%,其他成分占17%的意义又该怎样理解?
小结:如果把火锅配料的成分看做是100份,辣椒占了其中的45份,花椒占了38份,其他成分仅仅占了17份,难怪它又麻又辣!
2.结合身边的实例分析,进一步理解百分数的意义
出示某市学生近视率的信息。
(1)说一说其中每个百分数表示的意义。(2)体会百分数的优点,观察比较这组数据,你能发现什么?
(3)情感目标教育渗透。看到这组数据,你有什么感想?想对同学们说什么?
3.抽象概括出百分数的意义
刚才我们了解了每一个具体的百分数的含义,那么现在你能用自己的话说一说百分数表示什么意义吗?(先独立思考,再小组交流)
三、拓展应用,促进发展
1.招聘“学校新闻小记者”的活动
教师:寻找百分数信息,说百分数的意义,谈自己的感想。
(1)在某市学校附近的小摊中,合格的食品仅是30%。
(2)按照规划,到20xx年我国城市污水处理率不低于60%,重点城市不低于70%。
(3)我国的耕地面积占世界总耕地面积的7%,我国人口占世界总人口的22%。
2.汇报自己手中收集的百分数
四人小组汇报自己收集的每个百分数的.意义。
3.写百分数
(1)百分数该怎么写呢?(学生观察,教师示范)
教师:先写什么?再写什么?写时要注意什么?
(2)书写比赛。(让学生在20秒的时间内写百分数,看谁写得又快又好。)
如果老师要求完成的任务是写10个,能用一个百分数表示自己完成的情况吗?
教师:如果写11个,能用百分数表示吗?
4.完成练习一的第1题
5.百分数与分数比较
(1)百分数跟我们学过的哪种数比较相似?有什么联系与区别?(小组交流)
(2)判断。下面哪个分数可以用百分数的形式表示。
2510080100kG……
小结:百分数是一种特殊的分数,表示两个数之间的倍数关系,它的后面不能写单位名称;而分数既可以表示一个具体的数量,又可以表示两个数之间的倍数关系;如果分数表示具体的数量时,它的后面就可以写单位;如果表示倍数关系时,它的后面就不写单位。
6.百分数联想风暴
观察格子图,你能快速地联想到哪些百分数?(涂50个黑色格子,6个红色格子,44个白色格子)
教师:今天这节课你有什么收获?你能用百分数总结这节课的收获吗?
分数的意义教案8
一、教学目标
1、知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。
2、认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3、理解和掌握分数的基本性质,会比较分数的大小。
4、理解公因数与公因数、公倍数与最小公倍数,能找出两个数的公因数与最小公倍数,能比较熟练地进行约分和通分。
5、会进行分数与小数的互化。
二、教材说明和教学建议
教材说明
1、本单元内容的结构及其地位作用。
本单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,公因数与约分,最小公倍数与通分以及分数与小数的互化。
学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。在本学期,又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征。这些,都是本单元学习的重要基础。
通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生,从分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。
这些知识在后面系统学习分数四则运算及其应用时都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决一系列实际问题的必要基础。
例:分数的意义和性质
首先,第1节分数的意义和第3节分数的基本性质,是整个单元教学内容的主干,也是本单元教学的重点。第2节真分数与假分数是分数意义即分数概念的引申;第4节约分、第5节通分则是分数基本性质的运用。最后一节沟通了分数与小数在表现形式上的相互联系,得出了分数与小数的互化方法。整个单元的内容,大体上显现出由概念到性质,再到方法、技能的递进发展关系。
其次,在第1节里,分数的意义是学习的重点。在前面学习的基础上,这里引入了两个新的概念,即单位“1”与分数单位。至于分数的产生、分数与除法的关系,则是从分数的现实来源和数学内部来源两方面来帮助学生深化对分数的认识。
在第2节里,先通过三道例题,引入真分数、假分数、带分数三个概念,再通过例4,解决把假分数化成带分数或整数的问题。
在第3节里,先通过例1,得出分数基本性质,然后通过例2,在运用的过程中加以巩固。
在第4、5节里,先引入公因数与公因数,公倍数与最小公倍数的概念,再讨论求公因数、最小公倍数的方法,然后在此基础上,引入约分、通分的概念和方法。
显然,在第2、3、4、5节内部,同样显现出由概念到方法的逻辑关系。
2、本单元教材的编写特点。
与原教材相比,本单元教材的主要改进有以下几点。
(1)多侧面地展现了分数的来源。
在小学数学里,认识分数是小学生数概念的一次重要扩展。考虑到分数概念比较重要,又比较抽象,有必要通过揭示产生分数的现实背景,来帮助学生形成分数概念,理解它的含义。
从现实的角度来看,数是用来表示量的。5只兔、5个人,这些量的共同特征,可以用自然数5来表示。也就是说自然数是一个量(兔、人)与另一个作为单位的量(1只兔、1个人)的比。
现实世界中存在的量,除了上面例举的,由一些单位量合成的,可以用自然数表示多少的量之外,还存在着许多可以分割的,无法用自然数表示的量。例如,用一根作为单位长的木棒(米尺)去量一条线段AB的长,量了3次还有一段PB剩余。
(2)五下分数的意义和性质
这时,运用自然数就只能粗略地说,这条线段长3米多一点。要更精确一些,就必须把度量单位等分成更小的单位,来度量余下的那条线段。比如把1米一分为四,则每等份叫做“四分之一”米,记做1/4米。这就引入了形如1/n(n为大于1的自然数)的分数。假如使用度量单位14米去量图中剩下的一条线段PB,量了3次恰巧量尽,那么PB的长就是“3个1/4”,记作3/4米,这样就又引入了形如m/n(n为大于1的自然数,m为自然数)的分数。历,分数正是为了比较精确地测量这类可以分割的量而引入的。
从数学的角度来看,分数的引入是为了解决在整数集合里除法不是总能实施的矛盾。比如,2÷3在整数范围内不能计算,引入分数就能记作2÷3=2/3。当然,这种抽象的表示方法也有它的实际意义。例如把2块饼平均分给3个人,每人分得2/3块饼。
在本单元的第1节里,教材首先从历史的角度,从现实生活中等分量的需要出发,生动形象地展示了分数的现实来源。
在引出分数概念之后,教材又通过分蛋糕、分月饼的实例,抽象出分数与除法的关系,使学生初步感悟,有了分数,就能解决整数除法除不尽的矛盾。这实际上是从数学内部发展的角度,揭示了分数的来源。
这就为拓宽学生的认识,加深对分数的理解,提供了较为丰富的教学素材。
(3)约数、倍数的有关知识与分数的相关知识结合起来教学。
我们知道,在小学数学中,约数、倍数的有关知识的学习,主要是为学习分数服务的。但在以往的教材中,两者各自独立成章,学完后,学生还不知道学了公因数、公倍数与公因数、最小公倍数有什么用,只能对一组组整数单纯地练习求它们的公因数或最小公倍数。而且,这些知识集中在一个单元里,概念多,而且抽象,不利于分散难点,逐步消化,也不利于认识的螺旋上升。
现在,把公因数、公因数的内容安排在讨论约分之前教学;把公倍数、最小公倍数的内容安排在引进通分之前学习。从而将两部分知识紧密结合起来,学了就用,既能减少单纯的枯燥练习,节省教学时间,又有利于整除性知识的教学改革。为了配合这一改革,约分与通分不再合成一节,而是公因数、公因数与约分编为一节,公倍数、最小公倍数与通分编为一节。
(4)关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。
在本单元中,无论是公因数与公因数、公倍数与最小公倍数的引入,还是约分、通分的给出,教材都创设了适当的现实问题情境,进而在解决实际问题中,抽象出数学的概念,得出数学的方法。这些数学知识,还有利于培养学生的数学应用意识和解决实际问题的能力。
(5)部分内容作了适当的.精简处理或编排调整。
本单元中,比较重要的内容精简处理与编排调整,在前面揭示单元内容结构与联系的图示中,已有所显示。这里,再择要作些说明。
其一,分数大小比较,不在第1节中单列一段,而是充分利用前面学习分数初步认识时打下的基础,把有关内容与通分结合在一起学习。这样既进一步简化了第1节的内容,也有利于发挥学习的正向迁移作用。
其二,删去了原来第2节中把整数或带分数化成假分数的内容。这是因为根据课程标准,今后的分数运算中将不含带分数,所以无须再掌握把整数或带分数化成假分数的技能。考虑到把假分数化成带分数,容易看出这个假分数的大小在哪两个整数之间,从而有利于数感的形成;把能化成整数的假分数化成整数,是化简某些计算结果的需要。所以,把假分数化成带分数或整数的内容,仍然保留,但也作了简化,合在一个例题中予以解决。
教学建议
1、充分利用教材资源,用好直观手段。
如前介绍,本单元教材在加强数学与现实世界的联系上作了不少努力,同时,教材还运用了多种形式的直观图示,数形集合,展现了数学概念的几何意义。从而为教师与学生提供了较为丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。
本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、为直观,对于顺利开展教学来说,是十分必要的。所谓化抽象为具体,就是通过具体的现实情境,调动学生相关生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图示来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段。
2、及时抽象,在适当的抽象水平上,建构数学概念的意义。
为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如:比较1/3与1/2的大小,有学生回答,不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出1/3可能比1/2大,也可能比1/2小,还可能和1/2相等。造成这种错误认识的主要原因,就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识基础上,要不失时机地引导学生由实例、图示加以概括,建构概念的意义。
3、揭示知识与方法的内在联系,在理解的基础上掌握方法。
在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。
4、这部分内容可以用20课时进行教学。
分数的意义教案9
课题一:(一)
教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受知识来源于实践,又服务于实践的观点。
教学重点 理解。
教学用具 教材第84~85页有关的投影片、线段图等。
教学过程
一、创设情境
1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。
2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。
3.揭示课题
在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。
二、探索研究
1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:
(1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?
(2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )
(3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?
如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?
2、进一步认识单位1。
以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:
(1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?
(2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?
(3)练习:说出下图中涂色的部分各占整体的几分之几。
● ●
●○○○○○ ● ●
●○○○○○ ● ●
● ○
● ○
● ○
3.揭示。
(1)观察以上教学过程 所形成的板书。
一个物体
计量单位 单位1
一些物体
告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位1。(板书:单位1)
(2)反馈。①在以上各图中,分别是把什么看作单位1?② 、 、 各表示什么意义?③议一议:什么叫做分数?
(3)概括并板书。把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。
4.练习。练习十八第1、2、3题。
5.教学分数各部分名称、分数单位。分数的读、写法。
(1)教师任意写出几个分数,让学生说出分数各部分的名称。
(2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?
(3)认识分数单位,初步了解分数单位的特点。
练习:① 的分数单位是,它有个 。
② 的分数单位是,它有个 。
③个 是。
④ 是个 。
(4)想一想:读、写分数的方法是怎样的?
读作 ,表示 个 。
读作 ,表示有 个 。
三、课堂实践
1. 表示把平均分成份,表示这样的份的数。
2. 读作,分数单位是,再添上个这样的单位是整数1。
四、课堂小结
1、什么叫做分数?如何理解单位1?
2、什么是分数单位?分数单位有什么特点?
五、课堂作业
练习十八第5、6题。
课题二:(二)
教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。
教学重点 理解。
教学过程
一、 创设情境
1.用分数表示图中阴影部分。
▲▲ ▲▲
△△ ▲▲
2.口答:什么是分数?如何理解单位1?
3.填空。
是个 。 的分数单位是
7个 是。 的分数单位是
二、揭示课题
出示学习内容及学习目标。板书课题:。
三、探索研究
1.认识用直线上的点表示分数。
分数也是一个数,也可以用直线(数轴)上的点来表示。
(1)认识用直线上的点表示分数的方法。
①画一条水平直线,在直线上画出等长的距离表示0、1、2。
②根据分母来分线段,如果分母是4,就把单位1平均分成4份。如: 、 :
0 1 2
(2)提问:如果要在直线上表示 ,该怎样画?启发点拨。
①先画什么?再画什么?
②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?
③ 应用直线上的哪一个点来表示?
(3)如果要在这条直线上表示分母是10的分数,该怎么办?
这条直线上0~1之间的第七个点表示的分数是多少?
2.练习。
(1)教材第87页下面做一做的第2题。
(2)用直线上的点表示 、 、 、 。
3.教学例1。
(1)指名读题,帮助学生理解题意。
(2)出示讨论题,同桌讨论。
①这题中把什么看作单位1?
②1人占这个整体的几分之几?
③5人占这个整体的几分之几?
(3)汇报讨论结果,板书答语。
(4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位1是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。
4、练习。教材第88页的做一做。
四、课堂实践
1.教材第87页的做一做。
2.用直线上的点表示 下面的分数: 、 、 、 、 。
3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?
五、课堂小结
1.用直线上的点表示分数的方法是怎样的?
2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?
六、课堂作业
练习十八第4、7、8题。
课题三:分数与除法的关系
教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。
教学重点 理解和掌握分数与除法的关系。
教学用具 投影片(教材第89页的饼图)
教学过程
一、创设情境
1.填空。
(1) 表示。
(2) 的分数单位是,它有个这样的分数单位。
2.计算。(1)58 (2)49
二、揭示课题
我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识分数与除法的关系。(板书课题)
三、探索研究
1.教学例2
(1)读题后,指导学生根据整数除法的意义列出算式。板书:
13=
(2)讨论:1 除以3结果是多少?你是怎样想的?
(3)教师画出线段示意图,帮助学生理解。
1米
?
通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。
(3)写出答语。
2.教学例3。
(1)读题后,引导学生列出算式:34。
(2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。
(4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,
34=(块)。
由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样一份的数。
3、认识分数与除法的关系。
(1)引导学生观察13=、34=这两道算式,想一想:
①两个自然数相除,在不能得到整数商的情况下,还可以用什么数表示?
②用分数表示商时,除式里的被除数、除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)教师总结,学生发言,归纳出以下三点:
①分数可以表示整数除法的商;
②在表示整数除法的商时,要用除数作分母、被除数作分子;
③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调相当于一词)
分数与除法的关系可以表示成下面的形式:
板书:被除数除数=
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?
板书:ab=(b0)
(4)想一想:这里的b能为0吗?为什么?
启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b0。
(5)再想一想:分数与除法有区别吗?区别在哪里?
着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。
4、学生阅读教材,质疑问难。
四、课堂实践
教材第91页中间的做一做。
五、课堂小结。
引导学生回顾全课,说说学到了什么,自我总结,教师作补充。
六、课堂作业 。练习十九第1~3题。
课题四:分数与除法关系的应用
教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道事物间在一定的条件下是可以相互转化的观点。
教学重点 求一个数是另一个数的几分之几的应用题。。
教学过程
一、创设情境
1.口答:30分米=米 180分=时
练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。
2.说一说:分数与除法的关系?
3.用分数表示下面各算式的商。
(1)79(2)47(3)815(4)5吨8吨
二、揭示课题
这节课学习分数与除法关系的应用。(板书课题)
三、探索研究
1.出示例4。
(1)出示例4并审题。
(2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?
让全体学生尝试练习。
(3)集体订正。订正时让学生说说是怎样想的?
(4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?
重点说明当两数相除得不到整数商时,其结果可以用分数表示。
2.练习教材第91页下面的做一做。
3.教学例5 。
(1)出示教材第92页复习题,让学生独立列式解答。
集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?
板书:3010=3
答:鸡的只数是鸭的3倍。
(2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。
讨论后师生共同评价,主要有两种方法:
①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。
②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:710=。
(3)比较复习题与例5异同点。
通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的`题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。
4、练习。教材第92页做一做第1、2题。
四、课堂实践
1.在括号里填上适当的分数。
8厘米=米 146千克=吨 23时=日
41平方分米=平方米 67平方米=公顷 37立方厘米=立方分米
2.五(1)班有女生25人,比男生多4人。
(1)男生占全班人数的几分之几?
(2)女生占全班人数的几分之几?
(3)男生人数是女生人数的几分之几?
五、课堂小结
1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?
2、求一个数是另一个数的几分之几应用题的解答方法是什么?
六、课堂作业
练习十九第4~7题。
七、思考题。
练习十九第8题及思考题。
课题五:分数大小的比较
教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。
教学重点 掌握比较分数大小的方法。
教学用具 投影片(教材例6、例7直观图)
教学过程
一、创设情境
1.教材第93页复习题,请一名学生口答。
2.看图写分数,并比较分数的大小。
0 1
二、揭示课题
以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究分数大小的比较方法。(板书课题)
三、探索研究
1.同分母分数的大小比较。
(1)比较 和 的大小。
出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )
如果没有直观图,该怎样比较 与 的大小呢?
因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。
(2)用类似的方法引导学生比较 和 的大小。
(3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)
板书:分母相同的两个分数,分子大的分数比较大。
2.练习:教材第93页做一做。
3.同分子分数的大小比较。
(1)比较 和 的大小。
①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。
② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。
(2)比较 和 的大小。
用类似的方法进行比较并得出结论: < 。
(3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?
板书:分子相同的两个分数,分母小的分数比较大。
4、练习:教材第95页的做一做。
四、课堂小结
比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。
五、课堂实践
1.练习二十第1题。
2.练习二十第3题。
六、课堂作业
练习二十第2、4题。
七、思考练习
在括号里填上合适的数
< < < > >
分数的意义教案10
教学目标
(1)进一步理解分数、分子、分母、分数单位的意义,理解分数与除法的关系,理解和掌握分数的基本性质。
(2)能正确地约分和通分,能正确地比较分数的大小,能正确地进行分数和小数的互化。
(3)能正确地解答“求一个数是另一个数的几分之几”的应用题。
教学重点、难点
重点、难点:分数的意义和性质。
教具、学具准备
教学过程
一、知识整理
1、分数的意义整理
(1)提问:什么是分数?分数与除法有什么关系?
(2)练习:说出下列分数的意义、分数单位及有几个这样的分数单位:
1/45/61/8千克4/7米
A、学生回答并提问:在“1/8千克”和“4/7米”中,把什么看作单位“1”?
B、把“5/6”和“4/7米”改写成除法算式,怎么写?从除法的角度,如何来理解这两个分数的意义?
2、分数的基本性质整理。
(1)出示:1/2=()/85/7=20/()1又30/45=1又()/()()/20=6。8=9/()
A、学生回答。
B、这道题用到什么知识?什么是分数的基本性质?
(2)将“商不变性质”与“分数的基本性质”的内容添入下面的表格中:(全体练P159第12题中(4))
商不变性质分数的基本性质
[][]
反馈后提问:它们之间有什么联系?学生回答后接着问:那么。“商不变性质”就是“分数的基本性质”吗?为什么?
(3)练习:
①()/18=5/6=20/()=()÷12约等于()(保留两位小数)
②填上大于、小于或等与:
4/7()5/147/11()29/4421/35()3/532/60()2/3
问:你是怎么比较的?
二、基本练习
1、A、把单位“1”平均分成5份,表示这样的3份数是()。
把4吨平均分成11份,表示这样的`2份的数是(),表示这样的3份是()吨。
B、2又5/6的分数单位是(),它有()个这样的分数单位,9个这样的单位组成的数是();
C、把7/8的分数单位扩大2倍是(),把它的分数单位缩小2倍是()。
2、比较分数的大小,课本P160第14题。
(1)学生练习
(2)反馈练习结果后讨论:
11/22()7/825/40()20/321又3/20()1、151、75()1又5/6分别用什么方法比较大小来得方便?为什么?
(3)方法小结:
A、异分母分数比较大小,一般用通分或约分的方法进行;
B、分数与小数比较大小,一般化成小数比较方便些/
4、列式解答:
甲数是40,乙数是32,丙数是48,求:
(1)甲数是乙数的几倍?
(2)乙数是丙数的几分之几?
(3)甲数是乙、丙两数之和的几分之几?
(4)丙数是甲、丙两数之和的几分之几?
A、学生全体练习
B、反馈:师生讨论列式与结果。
C、小结:求一个数是另一个数的几倍或几分之几,关键是什么?方法怎样?这两类题目有什么共同点和不同点?
三、综合练习
1、课本P158第12题。
2、课本P159第13题。
学生练习后反馈说理。
3、独立作业:P160第15、16、17题。
四、课堂作业
《作业本》
理解分数、分子、分母、分数单位的意义,理解分数与除法的关系,理解和掌握分数的基本性质中,如“1千米的3/4和3千米的1/4是相等的”有些学生理解不通;还有如看图用分数表示阴影中什么时候用带分数,什么时候用假分数,也有些学生分不清。
分数的意义教案11
一、 本周主要内容: 百分数的意义和读写、百分数与小数、分数的互化
二、本周学习目标:
1、在现实情境中,理解百分数的意义,会正确读、写百分数。能正确进行百分数和小数、分数的互化。
2、使学生在理解百分数的意义、探索百分数与分数、小数互化方法的过程中,进一步体会数学知识之间的内在联系,增强思维的深刻性及数感。
3、使学生在用百分数表达和交流生活现象,解决简单实际问题的过程中,体会百分数与生活的'密切联系,增强自主探索与合作交流的意义,进一步增强学好数学的信心。
三、考点分析:
1、表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫做百分率或百分比。
2、百分数通常不写成分数的形式,而在原来的分子后面加上“﹪”来表示。
3、百分数只能表示一个数是另一个数的百分之几,而不能表示具体的量,也就是说百分数后面不能加单位。
4、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
5、把分数化成百分数,通常先把分数化成小数(除不尽时,一般保留三位小数),再把小数化成百分数。
6、百分数化成分数:先把百分数改写成分数,能约分的要约成最简分数。
7、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
分数的意义教案12
课题
分数的意义
教材分析
《分数的意义》是在学生初步认识分数的基础上系统学习的,也是把分数的概念由感性上升到理性的开始。分数的意义是今后学习分数四则运算和分数应用题的重要前提,对发展学生的思维能力有着重要作用。学生已经知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份可以用分数来表示。本节课重点是让学生理解不仅一个物体一个计量单位可用自然数1 来表示,许多物体看作的一个整体也可用自然数1 来表示,进而总结概括出分数的意义。
学情分析
学生在三年级上学期,已初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数的大小,会比较同分母分数的大小,还学习了简单的同分母分数加减法。所以说分数的经验学生已经积累的较多,在学习本课时已有了一定的知识基础。
教学目标
(体现多维目标;体现学生思维能力培养)
知识与技能:初步建立单位“1”的概念,理解分数的意义以及分数单位的意义。
能力与方法:通过自主学习、合作探究,理解并形成分数的概念,培养学生的科学探究和实践能力。
情感态度价值观:借助为分数配图,发展学生对美的体验与欣赏;揭示分数的产生,丰富学生的数学文化;通过同学间的合作,养成学生倾听、质疑等良好学习习惯。
重点、难点
教学重点:建立单位“1”的概念,能从具体实例中理解分数的意义。
教学难点:准确理解单位”1
教法、学法
学生独立思考,小组合作,教师引导
教 学 流 程
媒体运用
任务导学
明确
任务
师:大家交流一下你们预习分数的意义的情况。或说出你收获了哪些知识,或提出需要进一步探究的问题。
(学生汇报,教师适当提炼板书)
课堂探究
自主
学习
1、师:我们已经知道分数是由于人们生产、生活的实际需要产生的,如测量、分东西、计算等。你能举例子说一说在我们的周围什么时候需要分数吗?
(学生观察,交流)
师:同学们看到了,生活中处处有分数。然而,我们今天使用的分数它却走过一段及其漫长的旅程。让我们具体了解一下。
出示图1:世界上最早的分数是在3000多年前古埃及出现的。我们看,知道这表示的是哪个分数吗? 1/4,人们借助圆来表示分子是1的分数。
出示图2:你认为这个分数是多少?( 3/5)这是我国20xx多年前,用算筹来表示的分数。这是有考证的。1975年底在湖北云梦县秦代墓葬中出土了大批竹简,上面就记录了一些这样的分数,表现得整齐划一,这批竹简最早的是公元前359年的,最晚的是秦始皇统一十二年的,算到今天大约2360年。
出示图3:这是后来印度用数字表示的分数。这个分数是什么?(3/4)
出示图4:到公元12世纪,距现在大约800多年,阿拉伯人发明了分数线。这种分数就延续至今。这个分数也是?(生答:3/4。师板书)
2、感知3/4,理解分数意义
师:现在我们就来看3/4。老师让大家准备一个学具,剪一个我们所学的平面图形,大家把它拿出来。你能找出你手中图形的3/4吗?自己动手试一试。
(1)学生独立尝试剪。
(2)学生汇报剪的方法。(强调:平均分 谁是谁的3/4。)
(3)归纳分数的意义。师:大家都是这样剪的'吗?举起来互相看一看。如果要表示3/5、3/6怎么办呢?(生回答)这就告诉我们分数是表示什么的?(生齐答,师板书:把一个物体平均分成若干份,表示这样的一份或几份的数,叫做分数)
(4)阅读教材,画出分数的概念,读一读。
实物投影
合作
探究
3、合作探究,理解单位“1”
师:同学们,看到书中的概念,你们对老师整理的概念有异议吗?
(师生交流,提出“一些物体”也是一个整体的问题。)
师:一些物体能看成一个整体吗?让我们拿出小组内准备的三张饼,这次小组合作,要剪出三张饼的3/4,该怎么办呢?让我们一起探究剪的方法。
(1)小组合作,探究方法。
(2)全班汇报剪的方法,师演示剪的过程。
(3)明确单位“1”:我们把三张饼当成一个整体来分,也可以把一些物体当成一个整体来分,这一个整体可以用自然数“1”来表示,这就是我们所说的单位“1”。
(4)说一说你想把什么作为单位“1”来分一分?(生举例)
(5)完善分数的概念
(师板书:把 “一个物体”换成“单位1”)
4、弄清分数单位
(老师出示线段图:一条线段平均分成7分。)
交流
展示
(一份是整体的多少?另一份是整体的多少?2个1/7是多少?3个呢?4个呢?1/7是什么?
(2)学生再与文本对话,画出概念,同桌互相说说分数单位的意义。
(3)说出3/4的分数单位是多少?课前复习的几个分数的单位分别是多少?
反馈拓展
拓展
提升
分数很有趣吧?分数在我身边比比皆是,看64页的第7题提供给我们的信息就是我们生活中的分数。一起开看。
评价
检测
老师这里有12块糖,可以把这12块糖看成单位“1”吗?你怎么分这12块糖?创造出了什么分数?分数单位是多少?
分数的意义教案13
教学目标:
使学生了解"分数"产生的原因,理解分数的意义,弄清分子,分母,分数单位的含义。
教学重点:
使学生理解"分数"的意义,弄清分母,分子及分数单位的含义。
教学难点:
使学生理解"分数"的意义,弄清分数单位的含义。
教学课型:
新授课
教具准备:
课件
教学过程:
创设情景,温故引新
1,提问:
A,大家知道分数吗谁能说一个分数
B,你能举个实例说说这个分数的意义吗
2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决。即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示。
3,揭示课题:分数的意义
二,联系实际,探究新知
自主学习,整体感知分数的知识。
(1)相互交流:
①关于分数我已经知道了什么请把已知道的讲给同学们听。
(2)自学理解:
①关于分数,自学后我又知道了些什么
②我还有什么不明白的地方呢
③关于分数我还想知道什么
2,探究深化,进一步理解分数的意义。
(1)用分数表示下面各图中的阴影部分。[课件1]
(2)填空。[课件2]
①把一条线段平均分成5份,1份是它的()/();4份是它的()/()。
②把一块饼平均分成2份,每份是它的()/()。
③把一个正方形平均分成4份。1份是它的()/();3份是它的()/()
(3)用一张长方形的纸,折出它的1/4,并涂上阴影。
用一张正方形的纸,折出它的3/8,并涂上阴影。
(3)说说下列分数所表示的'意义。[课件4]
5/7 3/8 3/()()/9()/()
3,小结。
我们可以把许多物体看作一个整体,比如:一堆苹果,一批玩具,一班学生,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我把它叫做单位"1"。
板书:一个物体
单位"1"一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数。
三,加强练习,深化概念
比赛:请两位同学站起来。
提问:A,这两位同学是这组人数的几分之几
B,这两位同学是两组人数的-------这两位同学是全班人数的-------
四,家作
1,P88 。1,2
2,P89 。3
板书设计:
分数的意义
一个物体
单位"1"一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数
分数的意义教案14
一、教材分析
(一)教学内容:
九年义务教育小学数学教材第十册第四单元的第一课时
(二)教学目标:
1。让学生在说一说、分一分、画一画、写一写、折一折、涂一涂等体验活动中理解单位“1”,感受并理解分数的意义,培养学生实际操作的能力和抽象概括的能力。
2。在实践中培养学生收集、处理信息的能力以及自主探究、合作学习的能力。
3。通过创设互相协作,积极探索的学习情境,培养学生的学习兴趣,并渗透数学于实际生活的思想。
(三)教学重点:
建立单位“1”的概念,理解分数的意义。
(四)教学难点:
理解单位“1”的概念。
二、教学方法
学生认识事物是由易到难,由浅入深循序渐进的。学生虽然在前面的学习中对分数有了初步的认识,但要使学生理解单位“1”的概念,进一步明确分数的意义,必须遵循他们的认知规律。因此,本课坚持以学生为主体,教师为主导的原则。采用启发诱导、探究等教学法,并穿插自学、练习。通过动手操作、直观演示,让学生充分感知,再经过比较、归纳,突破许多物体组成的一个整体也可以看作单位“1”这一难点,层层推进、步步深入,并在此基础上理解分数的意义,培养了学生的多种能力。
三、学法指导
学生学习过程的始终,都离不开学法。在本课的教学中学法的指导寓于教学过程的始终。
(一)教给学生探索知识的方法。
教师为学生提供了一些动手的材料8颗棋子、2块糖、10粒豆子、一幅熊猫图等,让学生用这些学具以小组合作的形式将他们分一分、画一画、折一折表示1/2。然后观察、比较他们的相同点和不同点,领悟出单位“1”不仅仅可以是一个物体、一个计量单位、还可以是许多物体组成的一个整体。达到感性认识到理性认识的升华。
(二)引导学生在获取知识的同时,掌握对事物本质进行归纳总结的方法。
学生在在动手操作、比较之后归纳出了单位“1”也可以是许多物体组成的一个整体。让学生进行2次操作体会由于分的份数不同,取的份数不同,产生的分数也不同,在此基础上进一步明确分数的意义概括出:把单位“1”平均分成若干份,表示这样的'一份或几份的数,叫做分数。
四、教学程序
(一)展示资料,了解分数的产生
通过谈话自然引入,让学生通过调查、把自己知道的说给大家听。使学生有满足感,产生对学习分数的兴趣,感受到分数产生的必要性。
(二)唤醒已知、探究未知
1。通过回顾旧知,为学习新知作准备,激发学生的学习动机,调动学生的学习积极性。
第一次动手操作理解单位“1”的含义。
(1)教师提出:1/2除了可以表示把一个苹果平均分成2份,取其中的1份,还可以表示什么呢?为了便于同学们研究问题,老师为学生提供了一些动手材料(8颗围棋子、1米长的绳子、一张圆形纸片、一幅熊猫图等),以小组合作的形式将他们分一分、画一画、折一折,用这些学具试着表示1/2。
(2)集体交流、共享成果
各组选派代表到实物投影仪前,向大家展示自己的操作方法及成果。
(3)重点、难点问题教师利用多媒体技术予以突破。
如:学生用8颗棋子、6只熊猫表示1/2这个分数后,教师出示,通过直观演示、使学生明确单位“1”可以是一个圆、一个计量单位、还可以是许多物体组成的一个整体。
(4)引导归纳,通过比较相同与不同,让学生亲自去发现,去学习,去探究,体会、理解单位“1”并结合实际谈单位“1”,体会生活中的单位“1”
2。再次操作,领悟分数意义
(1)再次操作,让学生用学具表示出不同的分数,在操作中让学生体会到同样是这些学具却表示出了不同的分数,从而得出分的份数不同,取的份数不同,分数也就不同,为概括分数的意义作准备。同时,在操作过程中,培养了学生的创新思维,
(2)引导学生试着概括分数的意义
(3)阅读课本86页什么叫分数,自学分数各部分所表示的含义。
(4)巩固分数的意义和分子分母的含义。
(三)反馈练习
这一环节,教师根据学生反馈的信息及时调控教学,使学生切实掌握知识,达到训练和提高的目的。为了能使面向全体和因材施教相结合,让每一位学生获得成功,我设计下列练习:
1。用分数表示下面各图中的涂色部分
2。用下面的分数表示图中的涂色部分对吗?为什么?
以上两道题是基本练习题,目的是:突出本节课的重点、难点、深化对分数意义的理解。
3。游戏“夺红旗”
男、女各一队,派代表到前面夺红旗,但要听老师指挥,拿对了红旗归这一队,错了机会自动转给下一队,老师当发令员,其他同学当小小裁判员。女同学代表到前面拿走全部的2/11、男同学拿走剩下的1/9、女同学拿走剩下的1/4、男同学拿走剩下的2/3、女同学拿走剩下的1/2,剩下的一面奖给全班。
此题设计加深了学生对分数意义的理解,又增强了学习的趣味性,符合小学生的心理特征,同时训练学生的思维,培养了学生思维的广阔性、灵活性。
(四)全课小结,揭示课题
“这节课,我们一起学习了分数的意义,对分数有了进一步的认识,关于分数还有很多很多的知识哪!同学们课下继续去学习、去探究吧!”教师将学生的学习兴趣延伸到了下节课。
分数的意义教案15
分数、百分数的意义
教学内容:
教材第77~78页分数、百分数的意义和“练一练”,练习十五第1—10题。
教学目标:
使同学进一步认识分数、百分数的意义和相关概念,认识分数与小数的联系、分数与百分数的联系和区别,以和分数与除法之间的联系;进一步培养同学的判断、分析等思维能力。
教学重点:
进一步认识分数、百分数的意义和相关概念,认识分数与小数的联系、分数与百分数的联系和区别,以和分数与除法之间的联系。
教学难点:
正确认识分数和百分数的联系和区别。
教具准备:
小黑板
教学过程:
教学过程
自我加减
一、揭示课题
1.说出下列小数的意义。
O.3
0.13
0.258
O.013
同学口答后,说明一位小数、两位小数、三位小数……分别表示十分之几、百分之几、干分之几……
2.引入课题
我们已经复习了整数和小数的知识,今天开始,我们复习分数和百分数的知识。这节课,我们复习分数和百分数的意义。(板书课题)
通过复习,要进一步掌握分数、百分数的意义和一些相关概念,认识这些概念的联系,并提高分析、判断等思维能力。
二、复习分数的意义和相关概念
1.说出每个分数的意义。
提问:根据上面每个分数的意义,你能说说怎样的`数是分数吗?上面每个分数的分数单位是什么,各有几个这样的分数单位?什么叫分数单位?
2.说出下列各题的商。
2÷9
4÷13
÷7
提问:在上面算式里,能用整数表示这些算式的商吗?像上面这样两个数不能整除时,用什么数来表示商?
指名同学口答。
提问:除法与分数有什么关系,用字母怎样表示?
3.同学练习。
(1)“练一练”第l、2题。
同学填在课本上。指名口答,并说说怎样想的。
(2)口答练习十五第1题。
提问:为什么这两个分数不一样?
(3)口答练习十五第2题。
指名同学说出每个分数的意义。
(4)口答练习十五第3题。
指名同学说出每句话的含义。
4、比较每组数里小数与分数表示的意义。
0.3和
0.13和
0.013和
你觉得每组数里小数和分数表示的意义有什么联系?可以看出小数实际上是怎样的分数?
5.复习分数的分类。
(1)提问:我们把分数怎样分类的?
(2)“练一练”第3题。
指名同学口答。
(3)提问:你是根据什么判断一个分数是真分数,还是假分数的?真分数和假分数的值有什么区别?
(4)提问:假分数可以改写成什么形式的数?带分数和整数能改写成假分数吗?
(5)“练一练”第4题。
小黑板出示,指名一人板演,其余同学做在练习本上。
集体订正。
提问:假分数怎样化成带分数或整数?带分数或整数怎样化成假分数?
6.复习最简分数。
(1)提问:怎样的分数是最简分数?谁来举几个最简分数的例子?
(2)在(
)里填上适当的数,使每个分数都是最简分数。
①4米是6米的 。
②9千克是12千克的 。
③5厘米是1O厘米的 。
指名口答后提问:这里的分数表示的是什么意思?(一个数是另一个数的几分之几)
三、复习百分数的意义和相关概念
1、“练一练”第5题。
让同学填(
)里的数,然后口答。
老师板书:97.5%,提问:97.5%是什么数,它是怎样计算出来的?合格率97.5%具体表示什么意思?
从上面的数里,你能知道怎样的数叫做百分数?请你说出几个百分数。你认为百分数的意义与分数的意义有什么联系,有什么不同?
2.复习“成数”。
(1)提问:“成数”实际上是什么数?在哪里用“成数”来表示?
(2)“练一练”第6题。
同学做在课本上,然后口答。
3.练习十五第4题。
同学做在课本上,然后指名回答。
追问:怎样求一个数是另一个数的百分之几?
四、综合练习
1、练习十五第5题。
让同学填在课本上。
小黑板出示,同学口答,老师板书。
2.做练习十五第6题。
让同学做在练习本上,然后口答。追问:分数单位是的最简真分数的和是多少?
3.练习十五第8题。
先让同学讨论,再填在课本上。指名同学口答,并说明理由。
4.练习十五第l0题。
让同学找规律,在□里填上恰当的数。
同学口答,说说是怎样想的。提问:你知道这样填下去,会越来越接近哪个数?为什么?
五、课堂小结
谁来说说今天复习的这些概念含义?
六、课内作业
练习十五第7、9题
七、板书设计
分数、百分数的意义
a÷b= (b≠ 0)
真分数
分数
假分数
八、我的课后反思:
【分数的意义教案】相关文章:
《分数的意义》教案01-20
分数的意义的教案04-21
分数的意义教案03-19
《分数的意义》教案12-18
分数的意义教案01-24
分数的意义教案(优秀)11-02
《分数的意义》教案模板04-29
【热】《分数的意义》教案03-18
《分数的意义》教案范文04-24
分数的意义教案范文05-10