当前位置:好文网>实用文>教案>五年级数学教案

五年级数学教案

时间:2024-10-22 01:44:41 教案 我要投稿
  • 相关推荐

五年级数学教案通用15篇

  作为一名教职工,有必要进行细致的教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。那么优秀的教案是什么样的呢?下面是小编整理的五年级数学教案,仅供参考,希望能够帮助到大家。

五年级数学教案通用15篇

五年级数学教案1

  教学目标

  1、结合教材提供的素材自主探索确定位置的方法,并能利用方格纸依据两个数据确定物体的位置。

  2、进一步渗透数形结合的思想和方法,感悟数对与位置一一对应思想。

  3、初步建立坐标系的概念,感受数学与生活的联系。

  教学重难点

  1、能运用数对表示指定的位置。

  2、在方格纸上画出指定图形或地点的位置。

  教学过程:

  一、复习铺垫

  提问:怎样用数对表示物体的位置?

  用数对表示物体的'位置,要先确定列数,再确定行数,即(列数,行数)。

  【设计意图】

  通过复习用数对表示位置的方法,让学生明确要先确定列数,再确定行数,为学习新知做好铺垫。

  二、探索新知

  1、学习例2。

  (1)引导学生理解图意。

  横排和竖排所构成的区域是整个动物园的范围。动物园的各场馆都画成一个点,这些点都分散在方格纸竖线与横线的交点上。

  (2)师谈话引出问题。

  不仅找座位需要确定位置,看图时我们也要确定位置。这张动物园图很清楚地表示了每个场馆的位置,你能说出这个场馆分成了几行几列吗?(0表示列和行的起始)

  (3)用数对表示位置。

  用(3,0)表示大门的位置,熊猫馆的位置该怎样表示?你能表示出其它场馆所在的位置吗?

  大象馆(xx)猴山(xx)海洋馆(xx)。

  (4)在图上表示场馆的位置。

  出示飞禽馆(1,1),学生说明位置后,再在图上标出位置。

  学生独立标出猩猩馆(0,3),狮虎山(4,3)的位置,然后再投影订正。

  2、请同学们仔细观察同一行或同一列的数对,有什么地方相同,什么不同?

  小结:表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

  3、适时练习:完成教材第20页“做一做”第1、2题。

  学生独立完成,集体讲评。

  4、小结:想一想:怎样在方格纸上用数对确定物体的位置?

  在方格纸上用数对确定物体的位置,先找出数对表示的是第几列,第几行,然后在列数与行数相交处描点,标上名称。

  【设计意图】

  充分利用学生已有的生活经验和已学过的知识,让学生通过实际操作,会根据题目中所给数对在方格纸上确定具体物体的位置。

  三、巩固练习

  1、根据数对,在方格上标出各种动物的位置。

  熊猫(2,1)、小兔(3,4)、小猫(2,4)、小狗(3,1)

  2、完成练习五第3题。

  让学生对照数对涂方格,涂描后教师展示学生的进行对照。

  3、完成练习五第5题。

  让学生理解国际象棋在棋盘上表示棋子位置的规则,并会用数对确定棋子的位置。

  四、课堂总结

  谈谈今天你的收获?

  教后思考:

五年级数学教案2

  教学内容:小数的意义、小数的性质、比较小数的大小、把非整万(亿)的大数改写成以万(亿)为单位的小数。

  教学目标:

  1、使学生理解小数的意义,认识小数的记数单位,能正确读写小数。

  2、使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。能够比较小数的大小。

  3、使学生能够利用小数将一个较大的数改写成以万或以亿作单位的数。

  4、使学生掌握用四舍五入法求小数的近似数的方法。能按要求正确地求出小数的近似数。

  教学重点:

  1、理解小数的意义。

  2、掌握小数的性质和小数点位置移动引起小数大小变化的规律。

  教学难点:

  理解小数的意义、掌握小数的性质。

  课时安排:8课时

  (1)小数的意义和读写方法

  教学内容:p.28~30的例1、例2及相应的“试一试”“练一练”,练习五第1~5题

  教学目标:

  1、使学生在现实的情境中,初步理解小数的意义,学会读、写小数,体会小数与分数的联系。

  2、使学生在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的信心。

  教学重点:理解小数的意义。

  教学准备:米尺

  教学过程:

  一、谈话导入:

  这节课开始我们要学习新的单元“认识小数”。说说你可以在哪些地方看见小数。

  二、学习以“元”为单位的小数:

  1、学生说,老师板书。(学生在说的时候一开始可能会说超过1元的小数,引导他们说几个表示不满1元的小数。分两列板书。)

  看板书交流:(1)不满1元的小数。如0.1元,就是1角,它是1元的十分之一;0.2元,是2角,它是1元的十分之二……

  明确:几角就是1元的十分之几,可以用一位小数来表示。

  (2)超过1元的小数。分别看板书让学生说说它表示几元几角。重点明确:整数部分的数表示几元;一位小数,表示几角。

  2、我们现在买东西的商品价钱最小单位通常是“角”,老师小时候很多东西的都是用分来作单位的。

  比如:一支棒冰的单价是4分。你能用小数来表示吗?说说是怎么想的?

  引导学生发现:1分是1元的百分之一。就是0.01元。4分是1元的百分之四,是0.04元。

  继续提问:一支雪糕8分钱,怎么用小数表示?……

  说说你的发现:几分就是1元的百分之几,可以用两位小数来表示。

  3、提高练习:

  分别说出几类情况,让学生用小数表示:

  (1)几分的;(2)几角的;(3)几角几分的;(4)几元几角的;(5)几元几角几分的……

  遇到有困难的再说说思考的方法。

  4、读数对比:45.45元

  这个数怎么读?为什么要这样读?(突出整数部分和小数部分不同的读法)

  三、学习以“米”为单位的.小数:

  1、举米尺,板书:1米

  比“米”小的长度单位是“分米”,1米等于10分米;比分米更小的长度单位是厘米,1米等于100厘米;比厘米更小的长度单位是毫米,1米等于1000毫米

  板书成:1米=10分米=100厘米=1000毫米

  读一读,记一记。

  2、练习:1分米=( )米,你能用分数表示吗?你能用小数表示吗?

  2分米?3分米?……

  一句话:几分米就是零点几米

  1厘米=( )米,你能用分数表示吗?你能用小数表示吗?

  2厘米?3厘米?……

  一句话:厘米可以用两位小数来表示。

  说一说:4厘米、9分米……写成分数和小数各是多少?

  3、1毫米呢?你是怎么想的?

  指出:1毫米是1米的千分之一,用三位小数“0.001米”表示

  7毫米呢?15毫米呢?……

  重点解释“15毫米”:用三位小数,不够的位数用“0”补,补在前面。举例:如果补在后面,那就变成了“0.150”米,它表示多少?一样么?

  四、巩固练习:

  1、下面每个图形都表示整数“1”,把图中涂色的部分分别用分数和小数表示出来。

  学生独立完成后交流:每个图形是把整数“1”平均分成了多少份?涂色部分是这样的几份?写出的小数和分数有什么关系?

  可能有的学生不熟悉这样的“整数1”,强化认识:直条的是平均分成10份,格子的是平均分成100份,立体的是平均分成1000份。立体图在看的时候,只要数正面的。

  2、练一练:(题略)

  (1)学生独立完成再交流。“6角5分”要先想成“65分”。说说每个小数的含义。

  (2)继续完成第2题。指名读一读。

  3、完成练习五第1~5题

  (1)下面每个图形都表示整数“1”,涂色表示它下面的分数,并在括号里写出小数。

  学生完成后,再指名联系图中的涂色部分说说每个小数的具体含义。

  (2)读出下面各数,并把它表示的几分之几写在边上。

  (3)写出下面各数,并说说各是几位小数

  (4)在括号里填上合适的小数。(可选择第2、3个重点交流。突出一个“补0”问题。)

  (5)把下面各数改写成用“元”(“米”)作单位的小数

  指名说一说。有困难的再给予指导。

  五、全课总结:

  这节课我们认识了小数,你懂得了哪些知识?

五年级数学教案3

  教学目标:

  知识与技能:会解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。

  过程与方法:引导学生用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。

  情感与态度:在学习中使学生明白时间的宝贵,养成珍惜时间的好品质。

  教学重点:

  用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。(加法计算)

  教学难点:

  学生对于题意的理解。

  教学过程:

  一、导入阶段

  出示

  小丁丁和同学约好上午9时15分在动物园门口集合,小丁丁早晨7时48分出门,路上用了1小时23分。

  (1)在这段文字叙述中你获得了哪些信息

  上午9时15分在动物园门口集合;

  早晨7时48分出门;

  路上用了1小时23分。

  (2)9时15分、7时48分、1小时23分各表示什么,有什么不同?

  9时15分、7时48分表示时刻,是指某一事件发生的时候。

  1小时23分表示时间,是指某一事件经过了多久。

  (3)出示问题“小丁丁几时几分到达动物园门口”这是求时间还是求时刻?

  是求时刻

  (4)今天我们就要来讨论关于时间的计算的问题。(出示课题)

  [对于学生经常会混淆的.“时间”“时刻”这2个数学用语进行简单的辨析。使学生在解决问题时能明确地知道是要求什么?]

  二、中心阶段

  1、请学生试着计算。

  2、汇报

  (1)画图

  (2)竖式算

  注意:这步计算,“分”的计算满60要向“时”进1,因为分与时之间的进率是60。

  答:小丁丁9时11分到达动物园门口。

  3、比较2种方法得出2种方法都很好,都很直观、很简洁。

  4、小结

  我们可以利用时间线段图和竖式来解决某一时刻经过多少时间会到哪一个时刻的计算问题。

  三、练习阶段

  7时50分+45分=()时()分

  8时26分+2小时37分=()时()分

  15分18秒+3分52秒=()分()秒

五年级数学教案4

  课型:新授

  教学内容:教材P7及练习二第3、5、6、7、10题。

  教学目标:

  知识与技能:使学生进一步掌握小数乘法的计算法则,并能正确地运用这一知识进行计算。

  过程与方法:理解倍数可以是整数,也可以是小数,学会解答有关倍数是小数的实际问题。

  情感、态度与价值观:养成认真计算与及时检验的学习习惯。

  教学重点:运用小数乘法的计算法则正确计算小数乘法。

  教学难点:正确点出积的小数点;初步理解和掌握:当乘数比1小时,积都比被乘数小;当乘数比1大时,积都比被乘数大。

  教学方法:观察、分析、比较。

  教学准备:多媒体。

  教学过程

  一、复习准备

  1.口算。0.9×6 7×0.08 1.87×O

  0.24×2 1.4×0.3 0.12×6 1.6×5 4×0.25 60×0.5

  指名学生口算,然后集体订正。

  2.思考并回答。(1)做小数乘法时,怎样确定积的小数位数?

  (2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。

  3.揭示课题:这节课我们继续学习小数乘法。(板书课题)

  二、情景引入

  1.教学例5。师:同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的非洲野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”

  学生观察情境图,提取信息:

  所求问题:(鸵鸟的最高速度是多少千米/小时)

  所需条件:(非洲野狗的最高速度是56千米/小时,鸵鸟的'最高速度是非洲野狗的1.3倍)

  思路分析:

  (1)引导学生理解小数倍数的含义:谁来说一说“鸵鸟的最高速度是非洲野狗的1.3倍”是什么意思?(鸵鸟的最高速度是非洲野狗的1.3倍,表示鸵鸟的速度除了有一个非洲野狗那么快,还要快。)

  (2)追问提高学习新知的兴趣:

  ①非洲野狗能追上他们吗?(非洲野狗追不上鸵鸟。)

  ②“鸵鸟的最高速度是多少?”该怎样列式计算呢?(生回答:56×1.3)

  ③为什么这样列式?(求56的1.3倍是多少,所以用乘法。)

  (3)通过学生的回答引导学生小结:倍数关系也可以是比1大的小数。

  让学生独立计算出鸵鸟的最高速度,并集体订正。

  (4)指导学生用估算进行验算:请同学们看这个算式及结果,你认为对吗?你是怎么验证的?(板书验算,完善课题)

  学生可能会有以下几种验算的方法:

  ①用原式再计算一遍。

  ②把这个算式的因数交换一下位置,再算一遍。就可知道对与否。

  ③观察法:观察小数位数或第二个因数比1大还是比1小。

  ④用计算器进行验算。

  师小结:不管用哪一种方法来检验都可以,根据自己的情况,喜欢用那一种就用那一种来验算。

  (5)师:请同学们打开书,看一看书上的小朋友算得对吗?为什么?

  生:因为两个因数中,56是整数,因数1.3中只有1个小数,所以积中小数点的位置点错了,应该点在2与8之间,即积应为72.8。

  师:很好!在计算小数乘法时,每个小朋友都要养成认真做题、仔细检查的好习惯。

  师:通过刚才同学们的计算、验算得出鸵鸟的最高速度是72.8千米/小时,比起非洲野狗的速度怎么样?非洲野狗能追上鸵鸟吗?说明刚才我们的想法怎样?(学生小组讨论交流,由代表发言,教师点评。)

  2.看乘数,比较积和被乘数的大小。刚才有同学提到56×1.3式子中第二个因数比l大,所以积就比被乘数大,现在我们来研究一下这个问题。

  三、巩固练习

  1.完成教材第7页“做一做”。先让学生观察两道算式中的因数和积,进行判断,说出理由;再让学生独立计算,并用自己喜欢的验算方法进行验算。最后集体订正。

  2.练习二第3题。先让学生独立判断。集体订正时,让学生说明道理,明白每一小题错在什么地方。

  四、课堂小结。当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。

  作业:5、6、7

  课外作业:教材第9页练习二第10题。

  板书设计:

  求一个数的小数倍数是多少及验算

五年级数学教案5

  教学目标

  1.理解和掌握循环小数的概念.

  2.掌握循环小数的计算方法.

  教学重点

  理解和掌握循环小数等概念.

  教学难点

  理解和掌握循环小数等概念.

  教学过程

  一、铺垫孕伏

  (一)口算

  0.8times;0.5= 4times;0.25= 1.6+0.38=

  0.15divide;0.5= 1-0.75= 0.48+0.03=

  (二)计算

  21divide;3= 15divide;3= 12divide;3= 10divide;3=

  教师提问:通过计算,你发现了什么?

  二、探究新知

  (一)教学例7

  例7 10divide;3

  1.列竖式计算

  教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)

  使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

  所以10divide;3=3.33……

  (二)教学例 8

  例8 计算58.6divide;11

  1.学生独立计算

  2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,

  所以58.6divide;11=5.32727……

  3.观察比较 10divide;3=3.33…… 58.6divide;11=5.32727……

  教师提问:你有什么发现?

  (小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)

  4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

  教师板书:循环小数.像3.33……和5.32727……是循环小数.

  5.简便写法

  3.33……可以写作 ;

  5.32727……可以写作

  6.练习

  把下面各数中的循环小数用括起来

  1.5353…… 0.19292…… 8.4666……

  (三)教学例9

  例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)

  1.学生独立列式计算

  130divide;6=21.666……

  asymp;21.67(十克)

  答:小汽车大约装21.67千克汽油.

  2.集体订正

  重点强调:保留两位小数,只要除到小数点后第三位即可.

  3.练习

  计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.

  28divide;18 2.29divide;1.1 153divide;7.2

  (四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?

  1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的.也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.

  2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10divide;3=3.33……,小数部分的位数是无限的'小数,叫做无限小数,循环小数是无限小数.

  三、课堂练习

  (一)计算下面各题,哪些商是循环小数?

  5.7divide;9 14.2divide;11 5divide;8 10divide;7

  (二)下面的循环小数,各保留三位小数写出它们的近似值.

  1.29090…… 0.0183838……

  0.4444…… 7.275275……

  四、布置作业

  (一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.

  9.4divide;6 38.2divide;2.7 204divide;6.6 6.64divide;3.3

  (二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)

五年级数学教案6

  活动目标

  通过发豆芽活动,了解生活中的相关知识,运用多种途径查询和收集相关资料,并能运用数学的方法记录和描述豆芽的生长情况,培养同学们动手实践、分析问题以及解决问题的能力。

  活动准备

  教师收集相关资料,并先做一次实验。学生分组准备黄豆、绿豆各50g,以及发豆芽的器皿。

  活动过程

  一、提出问题,揭示课题?

  1.师:同学们,你们知道豆芽的生长过程吗?你自己发过豆芽吗?

  2.学生根据查询的资料和咨询科学教师得到的知识进行交流。

  3.根据学生的交流,提出:我们也来试一试发豆芽。

  揭示课题:发豆芽。

  二、讨论交流,得出活动步骤

  1.提问:发豆芽要做哪些准备?怎样记录发豆芽的过程呢?对最后的记录如何分析呢?

  结合学生的交流,得出本次活动的主要步骤:调查与收集;发制与记录;整理与分析;推测与应用。

  2.学生结合教材了解4个环节应该做什么,并在全班交流。

  教师重点提问:发豆芽的统计图画什么好?为什么?如何计算发豆芽的盈利情况?

  三、学生分组活动

  1.教师演示发豆芽的过程。

  2.教师提出要求:

  (1)发豆芽活动要做的事情比较多,我们要分组进行,每组5个人。

  (2)为了方便观察与记录,我们都将豆芽统一放在教室里进行观察,每天每个组在固定时间进行浇水。

  3.各组学生进行发豆芽实验。

  时间大约是6天。教师对各组实验的情况进行适时的指导,对各组的记录进行及时督促与检查。各组在发豆芽完成后,及时进行数据分析,制作好相应的统计图表,写好分析总结。

  四、小组交流,感受价值

  交流发豆芽的具体做法和注意事项。

  五、观察、记录、分析

  1.观察豆芽的生长情况。(大约6天时间)

  2.记录豆芽的生长情况。(每天进行记录)

  3.把豆芽的生长情况制成统计图表。

  4.分析统计图表,写好总结。

  六、总结反思

  小组结合统计图汇报豆芽生长情况,说说在发豆芽活动中的收获。

  注:五、六两个教学过程在课外进行。

  [简评:本课设计采取课内课外相结合的.方式,突出发豆芽的相关资料收集,讨论发豆芽的活动步骤,对发豆芽活动进行分析、交流、评价。通过分组活动,培养学生的合作意识与能力;统一在教室进行,便于学生观察、比较、交流、互相激励。同时,把发豆芽活动的重点放在依据实验数据制作、分析统计图表上,以体现数学在生活中的价值,体现综合应用的数学味。]

五年级数学教案7

  【教学目标】

  1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

  2.使学生通过自主探索,掌握2、5、3的倍数的特征。

  3.逐步培养学生的数学抽象思维能力。

  【重点难点】

  1.掌握因数、倍数、质数、合数等概念的联系及其区别。

  2.掌握2、5、3的倍数的特征。

  3.质数和奇数的区别。

  【教学指导】

  由于本单元内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度,所以教学应注意以下两点:

  1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的,倍数的个数是无限的等结论自然也就掌握了。对于后面的公因数、公倍数等概念的理解也就水到渠成了,要引导学生用联系的方法去掌握这些知识,而不是机械地记忆一堆支离破碎,毫无关联的概念和结论。

  2.由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但在过去的数学教学中,一些老师往往忽视概念的本质,而让学生死记硬背相关概念或结论,导致学生无法理清各概念间的前后承接关系,达不到融会贯通的程度,而学生到了五年级,抽象能力已经有了进一步提高,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数的个数都是无限的结论,逐步形成从特殊到一般的归纳推理能力等等。

  【课时安排】

  建议共分7课时

  1.因数和倍数2课时

  2.2、5、3的倍数的特征3课时

  3.质数和合数2课时

  【知识结构】

  因数和倍数(1)

  学习内容认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。第1课时课型新授

  学习目标1.从操作活动中理解因数和倍数的意义,会

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情

  教学重点理解因数和倍数的含义

  教学难点判断一个数是不是另一个数的因数或倍数。

  教具运用课件

  教学方法二次备课

  教学过程

  【复习导入】

  1.教师用课件出示口算题。

  10÷5=16÷2=12÷3=100÷25=150×4=

  220÷4=18×4=25×4=24×3=20×86=

  学生口算

  2.导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

  (板书课题:因数和倍数(1)

  【新课讲授】

  1.学习因数和倍数的概念

  (1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

  学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

  教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。

  谁来说一说其他的式子?

  学生回答。

  教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的.倍数,除数和商是被除数的因数。

  (2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

  学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

  学生回答,教师板书:倍数与因数是相互依存的。

  2.举例概括

  教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

  教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

  教师同时板书。

  教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

  引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

  如:m÷N=P,m、N、P都是非0自然数,那么N和P是m的因数,m是N和P的倍数。

  A×B=c,A、B、c、都是非0自然数,那么A和B是c的因数,c是A和B的倍数。

  你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

  3、9、15、21、36

  学生独立思考并回答。

  【课堂作业】

  1.完成教材第5页“做一做”。

  2.完成教材第7页练习二第1题。

  3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  【课堂小结】

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  板书设计因数和倍数(1)

  在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  因数和倍数一般指的是自然数,而且其中不包括0。

  倍数与因数是相互依存的。

  教学反思

  【作业设计】

五年级数学教案8

  1、教学目标

  1.使学生在具体情境中认识列、行的含义,逐步制定统一规则,初步理解数对的含义,会用数对表示物体的位置;

  2.使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念;

  3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  2、学情分析

  从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。

  3、重点难点

  教学重点:

  体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。

  教学难点:

  观察者角度的理解,方格线上和方格中位置描述的异同理解。

  4、教学过程

  4.1教学过程

  4.1.1教学活动

  活动1【讲授】用数对确定位置

  一、探讨描述位置两要素

  师:今天,谢老师的好朋友带来一份神奇的礼物。有请X先生

  第一关:找地鼠

  师:请描述小地鼠的位置。

  师:还能怎么说?

  生:从右往左数第2个。

  师:这只地鼠的位置呢?

  生:从上往下数第3个,从下往上数第2个。

  师:看来,描述一条线上的位置,我们只需要一个数。

  师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?

  师:我们全班来玩一个小游戏,请一位同学上台背对屏幕,其他同学描述地鼠的位置帮助他猜?

  师:你来说,谁有不同的说法,还有吗?

  师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。

  师:(面向猜的同学)听了这么多说法,能猜到位置吗?

  师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)

  师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(X先生录音)

  二、从列和行引出数对确定位置

  师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。

  师:(我们进入第二关,确定你的位置)从游戏回到教室里,像同学们的座位有的竖着排,有的横着排,数学中统一规定,像这样的竖排,我们称作列(板书:列),确定第几列一般是从左往右数,请第一列同学起立。你是怎样数的?有道理。这位同学,我看出了你的犹豫,有什么想说的?

  师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。

  师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。

  师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。

  师:回到大屏幕,当教室中的座位画在图上就成了这样。面对这幅图,谁是观察者?站在我们的角度,从左往右数第一列在哪里?第二列,接着……

  师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。

  师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。

  师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(2 3)什么意思?(2表示第2列,3表示第3行)还可以怎么说(3 2)。这个想法很好,更加简洁了。

  师:这些都是张亮位置的描述方法,你喜欢哪一种?

  (1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。

  师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)

  师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。

  师:剩下的三个位置也用数对表示吧。写在草稿纸上。

  师:四个数对中有两个比较特别,谁来说?

  师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。

  师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。

  师:你是怎样判断的?

  师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(X先生评价)

  三、点子图中的位置表示

  师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。

  师:X先生又有话说:(第三关找场馆。)这是动物园的平面图,我们一起来看看。大门的位置是(数对(3,0))什么意思?

  师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。

  师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。

  师:再次请出X先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)

  师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?X表示几,Y表示几。请拿出练习纸,用圆圈表示4盆小草的.位置。

  师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。

  四,数对的日常运用

  师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。

  国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)

  这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)

  师:学到这里我不禁想问:这么简单准确的数对又是谁发明的呢?数对背后又隐藏着怎样的故事呢?感兴趣的同学可以课后百度:笛卡尔和蜘蛛

  五、拓展总结。

  师:同学们我们还差一块拼图了,听听X先生带来了什么问题:第五关:确定位置,需要几个数?)

  生:需要两个数。

  师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。

  师:什么情况下我们用一个数就能确定位置?(直线上的)。

  师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。

  师:听听X先生对大家的最终评价吧。

  师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。

五年级数学教案9

  教学内容:p53第10-13题

  教学目标:

  1、用分数的有关知识,熟练解决求一个数是另一个数几分之几的实际问题

  2、能沟通知识之间的相互联系,提高解决问题的能力

  教学重点:熟练解决求一个数是另一个数几分之几的实际问题

  教学流程

  一、练习与应用

  1第52页第10题

  先做第一题:五一班一共有学生40人,其中女生有21人。女生占全班人数的几分之几?

  (1)先让学生联系分数的意义口头分析:把全班人数看作单位“1”,平均分成40份,女生人数占了其中的21份,所以女生人数占全班人数的21/40。

  (2)再让学生根据分数与除法的关系列出算式,并写出得数。

  (3)独立做下面两题

  (4)交流

  2做第11题

  (1)学生先独立练习

  (2)引导比较A三道题目计算方法有什么相同?

  B算式中选择的除数有什么不同?

  C从中还能想到些什么?

  (3)沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。

  3做第12题练习后加强对比

  (1)计算方法有什么相同的地方?

  (2)算式中选择的被除数为什么不同?除数为什么相同?

  (3)商的表示方法有什么不同?

  4做第13题练习后加强对比

  要引导学生区别清楚:一:第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位“1”,并把它平均分成6份,用分数表示其中的.一份,得到的分数不注明单位名称。二:第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称“米”。

  5思考题

  方法一:可以根据每个分数中分子与分母的大小关系来判断。

  方法二:通过画图帮助思考

  二、课堂

  完成补充习题上的练习。

五年级数学教案10

  【教学内容】新世纪小学数学五年级下册《长方体的认识》

  【教学目的】

  1.通过观察实物、动手操作等活动,使学生认识长方体的特征,形成长方体的概念。

  2.通过建立图形的表象的过程,发展学生的空间观念。

  3.通过动手操作,小组合作学习,培养学生的立体思维,使学生在合作交流中体验到学习数学的乐趣,体验到生活中处处有数学。

  【教学用具】长方体模型课件

  【教学过程】

  一、情境创设新课引入

  1.同学们听说过北京大学吗?上北大是老师读书时的梦想。你能从北大校区中找到我们曾经学过的图形吗?

  2.生活中,你还见过哪些物体的形状是长方体?

  3.揭题:这节课进一步认识长方体。(板书课题)

  二、引导探究小组合作

  1.认识长方体各部分的名称。

  (1)游戏:你们会玩摸长方体的游戏吗?

  A你怎么确定摸到的一定是呢?还有什么方法?(他是用“面”、“棱”、“顶点”描述这个长方体的。)

  B小组内互相说一说:什么是长方体的面、棱、顶点?(我想什么是长方体的“面、棱、顶点”你们可能有所了解,在资料袋中也有提示说明。)

  C全班反馈

  D教师小结:刚才同学们用自己的语言描述了长方体的面、棱、顶点。

  2.探究长方体面、棱、顶点的特征

  A它们之间有联系吗?各有什么特征?

  B分小组活动。(下面小组分工合作,利用学具,通过摸一摸,数一数,量一量,剪一剪,比一比,看看有什么精彩的发现?将发现写在记录表上。)

  C全体发馈,同学提问。(根据小组的发现,谁能向他们提出问题?)

  D你们还有问题吗?

  E教师提问:正方体与长方体有关系吗?为什么说是特殊的长方体?(预设:认识长方体长、宽、高特征;正方体与长方体的关系)

  F教师小结:刚才同学们用自己的方法研究了长方体的特征,你可以画出一个长方体吗?

  3.教学如何画长方体。(如果这样放最多可以看见他的几个面?还有哪几个面看不见?)(在画图时,除了画前、后两个面是长方形,其它的`面看上去成了平行四边形,实际上它还是长方形)

  三、运用新知体验价值

  1.如果现在只看到长方体的长、宽、高,你还能画出一个长方体吗?(闭上眼睛,画长方体。)

  2.说出长方体各个面的面积。说出长方体各个面的面积。

  3.猜一猜:根据长、宽、高长度,它可能是生活中的什么物体?

  4.做一个如图的长方体宝宝床的床架,至少需要多少分米长的木条?

  5.你准备选择下面哪一种尺寸的床板?(单位:分米)

  32×920×10

  四、全课总结拓展创新

  1.想一想:为何北大校区众多建筑设施的外观造型都是长方体呢?

  2.实验活动:用准备的材料做一个长方体(再次体验长方体的特征)。

五年级数学教案11

  (一)、实践操作

  1、组织谈话

  师:上节课我们已经认识了平行四边形,同学们都学了哪些知识,谁还记得。

  生:两组对边分别平行的四边形叫平行四边形。

  生:认识了平行四边形的高。

  2、媒体演示

  (出示课件:小山羊的困惑。配音:一只莽撞的小山羊把一个长方形撞倒了,变成了一个平行四边形,于是小山羊就发现了一个问题,是什么问题呢?)

  师:现在你能发现什么问题呢?

  生:为什么会变成平行四边形呢?面积是否变了呢?

  师:小山羊到底发现了什么问题?你们想不想知道呢?

  (出示问题:现在的平行四边形和以前的长方形谁的面积大呢?)

  生:一样大。

  生:我认为长方形面积大,平行四边形面积小。

  师:现在有两种意见,大部分同学认为面积一样大,个别同学认为长方形面积大。到底谁说得对呢?你们能不能想个办法比出这两个图形面积的大小?

  师:有什么方法验证一下它们的面积是否一样大呢?

  生:可以算一算它们的.面积的大小。

  师:怎样算呢?

  生: 长方形的面积 =长×宽(板书)

  平行四边形的面积 =底×高

  师:你是怎样知道的?

  生:我是看书知道的。

  生:我是家长告诉的。

  师:那么,为什么平行四边形的面积=底×高,公式是怎么来的呢?这节课,我们就重点来研究平行四边形面积公式的推导过程?

  师:下面就用你自己手中的学具,试着把平行四边形转化成我们已经学过的图形。

  (小组合作,4人一组,然后在全班汇报)

  (二)交流汇报

  师:你转化后的图形是什么?你是怎么转化的呢?谁能大胆的上来说一说。

  生:是长方形,我是沿着高剪的。

  师:你为什么这样剪,不沿着高剪开行不行?

  生:长方形的四个角都是直角,所以只有沿着高剪开才能转化成长方形。

  师:这个长方形和原来的平形四边形个部分之间有什么关系呢?同学们仔细观察(媒体演示转化的过程:找出底,画高,剪开,平移,拼补,转化成了长方形)。

  师::长方形和原来的平行四边形有什么关系?

  生:转化后的图形是长方形,我发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积是底乘高。

  师:谁再来完整的说一遍。

  师:我们通过转化推导出来的面积计算公式和书本上的一样。同学们真是了不起,会自己发现数学知识了。

  师:平行四边形的面积计算公式还可以用字母表示呢?你知道怎样表示吗?(学生说,教师板书)

  生:公式是s=ah

  师:通过刚才的学生,我们知道了平行四边形面积计算的公式,下面一起来解决一些具体的实际问题。

  (三)巩固发展

  1.口算下列各题。

  生:第一个平行四边形的面积是12平方厘米。

  生:第二个平行四边形的面积是20平方分米。

  生:第三个平行四边形的面积是8平方米。

  2.辨析性练习:

  师:你能根据图中给出的数据求平行四边形的面积吗?(课件出示下图,单位:厘米)

  生:是54平方厘米。

  生:我不同意,因为……

  师:为什么说面积不是54平方厘米?

  生:我也认为不是9×6=54(平方厘米),因为6厘米这条高不是9厘米这条底上。如果沿6厘米这条高剪开拼成长方形,长方形的长就是6厘米这条高,长方形的宽却不是9厘米这条底。所以不能用9×6=54。

  师:谁再来说说。

  师:让我们来看看。下面你能计算了吗?(课件出示)

  生:2×9=18;3×6=18

五年级数学教案12

  【教学目标】

  1、知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

  2、认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

  3、理解和掌握分数的基本性质,会比较分数的大小。

  4、理解公因数与公因数、公倍数与最小公倍数的意义,能找出两个数的公因数与最小公倍数,能比较熟练地约分和通分。

  5、会进行分数与小数的互化。

  【重点难点】

  1、分数的意义和分数的基本性质。

  2、理解单位“1”的含义。

  【教学指导】

  1、充分利用教材资源,用好直观手段。

  本单元教材在加强教学与现实世界的联系上做了不少努力,同时,教材还运用了多种形式的直观图式数形结合,展现了数学概念的几何意义,从而为老师与学生提供了丰富的学习资源。教学时,应充分利用这些资源,发挥形象思维和生活体验对于抽象思维的支持作用。

  2、及时抽象,在适当的水平上,构建数学概念的意义。

  为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。因此,在充分展开直观教学,让学生获得足够的感性认识的基础上,要不失时机地引导学生由实例、图式加以概括,构建概念的'意义。

  3、揭示知识与方法的内在联系,在理解的基础上掌握方法。

  在本单元中,假分数化为带分数或整数,约分与通分,分数与小数互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。因此,教学时不宜就方法论方法,而应突出方法的过程,使学生明白操作方法背后的算理,这样就能依靠理解掌握方法,而不是依赖记忆学会操作。

  【课时安排】建议共分17课时

  1、分数的意义3课时

  2、真分数和假分数2课时

  3、分数的基本性质2课时

  4、约分4课时

  5、通分4课时

  6、分数和小数的互化2课时

五年级数学教案13

  一、主要教学内容

  ㈠数与代数

  1、第一单元“小数除法”。本单元包括小数除法,积商近似值,循环小数、小数四则混合运算等内容。结合具体情景,经历探索小数除法计算方法的过程,初步体验转化的数学思想。了解在生活中有时只需要求积商的近似值,掌握求近似值的方法,培养估算意识。初步了解循环小数,运用小数四则运算解决日常生活中的简单问题。

  2、第三单元“倍数与因数”

  本单元是在学生学过整数的认识、整数的四则计算等知识的基础上学习的,学习的主要内容有:认识自然数,倍数与找倍数,2、5、3倍数的特征,因数与找因数;质数与合数,奇数与偶数等知识。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。本单元的具体学习内容安排了六个情境活动:在“数的世界”活动中,主要是认识倍数和因数;在“探索活动(一)——2、5的倍数的特征”中,学生将经历探索2、5倍数特征的过程,理解2、5倍数的特征,知道奇数、偶数的含义;在“探索活动(二)——3的倍数的特征”中,学生将经历探索3的倍数的特征的过程,理解3的倍数的特征;在“找因数”活动中,利用直观的拼图游戏,让学生体会、掌握找因数的直观方法;在“找质数”活动中,引导学生经历用“筛法”制作质数表的过程,理解质数和合数的意义,并在活动在过程中,让学生了解一些数学史,丰富对数学发展的认识,感受数学文化的魅力;在“数的奇偶性”活动中,尝试运用“列表”、“画示意图”等解法问题策略发现规律,运用数的奇偶性解决一些简单问题。通过本单元的学习,学生将经历探索数的有关特征的活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数以及知道质数、合数;将经历2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步合情推理的能力;在探索数的特征的过程中,体会观察、分析归纳或猜想验证等探索方法,在数学活动中体验数学问题的探索性和挑战性。

  3、第五单元“分数”

  在学习本单元内容前,学生已初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母分数加减法,以及能初步运用分数表示一些事物、解决一些简单的实际问题。本单元在此基础上引导学生进一步理解分数的意义,学习分数的再认识、分数与除法的关系、真分数、假分数、分数大小变化规律、公约数、约分、公倍数、通分、分数的大小比较等知识。这些知识的学习是进一步学习分数四则计算、运用分数知识解决实际问题的基础,是分数教学的重点。本单元的具体学习内容安排了九个活动情境:在“分数的再认识”活动中,通过具体的情境,进一步理解分数的意义,体会“整体”与“部分”的关系,了解一个分数对应的“整体”不同,则所表示的具体数量也不同;在“分饼”与“分数与除法”两个活动中,学生将知道分数的分类标准,并能掌握带分数与假分数的相互转化的方法;在“找规律”的活动中,经历探索分数大小不变规律的过程,理解分数的基本性质,并能根据分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数;在“找最大公因数”与“约分”两个活动中,学生将认识公因数与最大公因数、并能运用这些知识进行正确地约分,也为后续理解、掌握通分的方法打下了基础;在“去少年宫”与“分数的大小”两个活动中,学生将认识公倍数与最小公倍数,并能运用这一知识,会正确地通分与比较分数的大小。通过本单元的学习,学生将进一步理解分数的`意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。

  ㈡空间与图形

  1、第二单元“轴对称和平移”

  结合实例,感知平移轴对称现象;能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形;通过观察、操作,认识轴对称图形,并能在方格纸上画出简单图形的轴对称图形。

  2、第四单元“多边形的面积”

  本单元学习的内容主要有:平面图形面积大小的比较方法、平行四边形面积的计算方法、三角形面积计算的方法以及梯形面积计算的方法等。

  2、第六单元“组合图形的面积”

  本单元的主要内容有:组合图形面积的计算与生活中各种不规则图形面积的

  估计与计算。在第二单元中,学生已经学习了平行四边形、三角形与梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,这也是提高学生综合能力的重要平台。

  本单元的具体学习内容安排了两个情境活动:在“组合图形的面积”中,重点介绍组合图形的形成以及计算组合图形的分割方法;在“探索活动——成长的脚印”中,主要学习不规则图形面积的估计与计算。通过这些内容的安排,让学生形成解答组合图形的基本能力。

  ㈢统计与概率

  第六单元“可能性”

  本单元学习的主要内容有:用分数表示可能性的大小与运用分数表示可能性大小的知识设计日常生活中的方案。在二年级时,学生已经学习了客观事件出现的可能性的,在三年级时,他们学习了客观事件出现可能性的大小,认识到可能性大小的出现是与相关的条件有密切的关系,在四年级时,教材安排游戏公平的活动,让学生认识等可能性。

  本册教材安排的综合应用内容将进一步整合数与代数、空间与图形、统计三个领域的内容,并进一步加强课堂数学知识与现实生活中的实际问题的结合,以提高学生综合实践的能力。本册教材安排了三个集中性的专题综合应用内容:在“数学与交通”的专题综合应用活动中,安排了“相遇”、“旅游费用”以及“看图找关系”三个小专题的内容,通过这些活动,以提高学生解决问题的策略思想;在“尝试与猜测”的专题综合应用活动中,安排了“鸡兔同笼”与“点阵中的规律”的两个小专题,通过这两个活动,引导学生关注与思考一些日常生活中的现象,从中能发现一些特殊的规律。通过对生活中一些现象分析与解决,让学生进一步体会数学与日常生活的密切联系。二、课时安排:(见附表)

  第一单元:小数除法

  教学目的要求

  1.通过具体情境,进一步理解除法的意义,探索并掌握小数除以整数的计算方法。

  2.通过“打电话”的情境,利用已有知识,经历探索除数是小数的除法计算方法的过程,体会转化的数学思想。

  3.通过人民币和外币的兑换活动,掌握求积、商近似值的方法,能够按要求求出积、商的近似值。

  4.通过计算蜘蛛和蜗牛每分爬行多少米,发现余数和商的特点,知道什么是循环小数,并会用四舍五入法对循环小数取近似值。

  重点与难点说明

  小数的除法,分为三种情形分别进行探索:一是小数除以整数,二是整数除以整数;三是小数或整数除以小数。

  小数除以整数的情形,结合实例,探索并理解可以把被除数当成整数,变成整数的除法求得商后,只要商的小数点与被除数的小数点对齐就可以了。

  整数除以整数的情形,在以往学过的整数的除法中,只能求得整数的商及余数。但在小数的除法中,整数的余数可以化为更小的单位(小数单位),因此可以继续平均分(做除法),得到的商是小数。所以,今后遇到整数除以整数的情形,可以把被除数(整数)的末尾添上小数点,在这个小数点后面可以添上所需要的“0”。这样,整数除以整数的情形又转化为上述小数除以整数的情形了。

  除数是小数的情形,应用商不变规律,根据把除数变成整数的需要,把被除数和除数扩大相同的倍数,就把除数是小数的除法转化成上述除数是整数的除法了。

  在实际应用中,对于复杂的小数的乘法或除法运算,可以用计算器进行计算,并且会根据要求,取积或商的近似值。

  认识循环小数,结合竖式除法的过程,体会出现了什么情况,不用再除下去,就能知道商一定是循环小数。

  第三单元目标:

五年级数学教案14

  设计说明

  本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:

  1、把新知融入到有趣的情境中,激发学生的学习兴趣。

  在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的目的。

  2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。

  在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。

  设计意图:

  在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的.过程,形成知识表象。

  课前准备

  教师准备PPT课件长方形纸

  教学过程

  (1)复习巩固,情境导入,激发兴趣

  1、求下面每组数的公因数。

  42和50 15和5 8和21 18和12

  2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。

  (2)认识约分

  1、尝试“变分数”。

  课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。

  让学生了解“变化”的要求:

  ①这个分数要与的大小相等。

  ②这个分数的分子、分母要比的分子、分母小。

  2、了解约分的概念。

  ①所变出的分数与原分数有什么关系?

  ②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

  ③请学生说一说所变的分数是怎样得来的。

  观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。

  3、认识最简分数。

  ①约分后的分子、分母能否再变小了?为什么?

  ②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。

  4、说出几个最简分数,强化最简分数的概念。

  (3)合作交流,总结方法

  1、讨论:你能根据我们化简的过程找到约分的方法吗?

  2、小结。

  教师板书约分时一般采用的两种方法:

  ①逐步约分法。

  如约分时,依次用12,18的公因数2和3去除,最后约分成。

  ②一次约分法。

  如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。

  3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。

五年级数学教案15

  整理和复习

  教学要求掌握统计的步骤(数据收集与数据整理),会认识统计表、会填充统计表。掌握较复杂的求平均数的应用题的解答方法。

  教学准备投影片(仪)

  教学过程

  一、边练习边复习

  学生在课本上自己完成,并根据题目体会:

  1.分段对数据整理的方法

  2.怎样从复式统计表中获取信息。

  3.求平均数应用题应该注意什么问题?

  二、学生小组合作学习

  1.统计的.步骤是什么?对应的方法是什么?

  2.求平均数应用题的思路是什么?(分什么;按什么分)

  三、课堂实践

  练习四的1~3题。

  四、课外实践

  练习四的第4题。

  课后反思:

  学生习惯于用自己的方法进行学习,因此在教学中应该鼓励学生大胆地去尝试,用多样化的方法方式进行探索。

《五年级数学教案通用15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【五年级数学教案】相关文章:

五年级数学教案06-25

小学数学教案五年级11-18

五年级数学教案06-01

五年级教案数学教案12-27

小学数学教案五年级11-04

五年级数学教案【荐】04-02

五年级上册数学教案03-26

五年级数学教案通分04-03

五年级数学教案:约分04-04

众数的五年级数学教案11-18

五年级数学教案通用15篇

  作为一名教职工,有必要进行细致的教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。那么优秀的教案是什么样的呢?下面是小编整理的五年级数学教案,仅供参考,希望能够帮助到大家。

五年级数学教案通用15篇

五年级数学教案1

  教学目标

  1、结合教材提供的素材自主探索确定位置的方法,并能利用方格纸依据两个数据确定物体的位置。

  2、进一步渗透数形结合的思想和方法,感悟数对与位置一一对应思想。

  3、初步建立坐标系的概念,感受数学与生活的联系。

  教学重难点

  1、能运用数对表示指定的位置。

  2、在方格纸上画出指定图形或地点的位置。

  教学过程:

  一、复习铺垫

  提问:怎样用数对表示物体的位置?

  用数对表示物体的'位置,要先确定列数,再确定行数,即(列数,行数)。

  【设计意图】

  通过复习用数对表示位置的方法,让学生明确要先确定列数,再确定行数,为学习新知做好铺垫。

  二、探索新知

  1、学习例2。

  (1)引导学生理解图意。

  横排和竖排所构成的区域是整个动物园的范围。动物园的各场馆都画成一个点,这些点都分散在方格纸竖线与横线的交点上。

  (2)师谈话引出问题。

  不仅找座位需要确定位置,看图时我们也要确定位置。这张动物园图很清楚地表示了每个场馆的位置,你能说出这个场馆分成了几行几列吗?(0表示列和行的起始)

  (3)用数对表示位置。

  用(3,0)表示大门的位置,熊猫馆的位置该怎样表示?你能表示出其它场馆所在的位置吗?

  大象馆(xx)猴山(xx)海洋馆(xx)。

  (4)在图上表示场馆的位置。

  出示飞禽馆(1,1),学生说明位置后,再在图上标出位置。

  学生独立标出猩猩馆(0,3),狮虎山(4,3)的位置,然后再投影订正。

  2、请同学们仔细观察同一行或同一列的数对,有什么地方相同,什么不同?

  小结:表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

  3、适时练习:完成教材第20页“做一做”第1、2题。

  学生独立完成,集体讲评。

  4、小结:想一想:怎样在方格纸上用数对确定物体的位置?

  在方格纸上用数对确定物体的位置,先找出数对表示的是第几列,第几行,然后在列数与行数相交处描点,标上名称。

  【设计意图】

  充分利用学生已有的生活经验和已学过的知识,让学生通过实际操作,会根据题目中所给数对在方格纸上确定具体物体的位置。

  三、巩固练习

  1、根据数对,在方格上标出各种动物的位置。

  熊猫(2,1)、小兔(3,4)、小猫(2,4)、小狗(3,1)

  2、完成练习五第3题。

  让学生对照数对涂方格,涂描后教师展示学生的进行对照。

  3、完成练习五第5题。

  让学生理解国际象棋在棋盘上表示棋子位置的规则,并会用数对确定棋子的位置。

  四、课堂总结

  谈谈今天你的收获?

  教后思考:

五年级数学教案2

  教学内容:小数的意义、小数的性质、比较小数的大小、把非整万(亿)的大数改写成以万(亿)为单位的小数。

  教学目标:

  1、使学生理解小数的意义,认识小数的记数单位,能正确读写小数。

  2、使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。能够比较小数的大小。

  3、使学生能够利用小数将一个较大的数改写成以万或以亿作单位的数。

  4、使学生掌握用四舍五入法求小数的近似数的方法。能按要求正确地求出小数的近似数。

  教学重点:

  1、理解小数的意义。

  2、掌握小数的性质和小数点位置移动引起小数大小变化的规律。

  教学难点:

  理解小数的意义、掌握小数的性质。

  课时安排:8课时

  (1)小数的意义和读写方法

  教学内容:p.28~30的例1、例2及相应的“试一试”“练一练”,练习五第1~5题

  教学目标:

  1、使学生在现实的情境中,初步理解小数的意义,学会读、写小数,体会小数与分数的联系。

  2、使学生在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的信心。

  教学重点:理解小数的意义。

  教学准备:米尺

  教学过程:

  一、谈话导入:

  这节课开始我们要学习新的单元“认识小数”。说说你可以在哪些地方看见小数。

  二、学习以“元”为单位的小数:

  1、学生说,老师板书。(学生在说的时候一开始可能会说超过1元的小数,引导他们说几个表示不满1元的小数。分两列板书。)

  看板书交流:(1)不满1元的小数。如0.1元,就是1角,它是1元的十分之一;0.2元,是2角,它是1元的十分之二……

  明确:几角就是1元的十分之几,可以用一位小数来表示。

  (2)超过1元的小数。分别看板书让学生说说它表示几元几角。重点明确:整数部分的数表示几元;一位小数,表示几角。

  2、我们现在买东西的商品价钱最小单位通常是“角”,老师小时候很多东西的都是用分来作单位的。

  比如:一支棒冰的单价是4分。你能用小数来表示吗?说说是怎么想的?

  引导学生发现:1分是1元的百分之一。就是0.01元。4分是1元的百分之四,是0.04元。

  继续提问:一支雪糕8分钱,怎么用小数表示?……

  说说你的发现:几分就是1元的百分之几,可以用两位小数来表示。

  3、提高练习:

  分别说出几类情况,让学生用小数表示:

  (1)几分的;(2)几角的;(3)几角几分的;(4)几元几角的;(5)几元几角几分的……

  遇到有困难的再说说思考的方法。

  4、读数对比:45.45元

  这个数怎么读?为什么要这样读?(突出整数部分和小数部分不同的读法)

  三、学习以“米”为单位的.小数:

  1、举米尺,板书:1米

  比“米”小的长度单位是“分米”,1米等于10分米;比分米更小的长度单位是厘米,1米等于100厘米;比厘米更小的长度单位是毫米,1米等于1000毫米

  板书成:1米=10分米=100厘米=1000毫米

  读一读,记一记。

  2、练习:1分米=( )米,你能用分数表示吗?你能用小数表示吗?

  2分米?3分米?……

  一句话:几分米就是零点几米

  1厘米=( )米,你能用分数表示吗?你能用小数表示吗?

  2厘米?3厘米?……

  一句话:厘米可以用两位小数来表示。

  说一说:4厘米、9分米……写成分数和小数各是多少?

  3、1毫米呢?你是怎么想的?

  指出:1毫米是1米的千分之一,用三位小数“0.001米”表示

  7毫米呢?15毫米呢?……

  重点解释“15毫米”:用三位小数,不够的位数用“0”补,补在前面。举例:如果补在后面,那就变成了“0.150”米,它表示多少?一样么?

  四、巩固练习:

  1、下面每个图形都表示整数“1”,把图中涂色的部分分别用分数和小数表示出来。

  学生独立完成后交流:每个图形是把整数“1”平均分成了多少份?涂色部分是这样的几份?写出的小数和分数有什么关系?

  可能有的学生不熟悉这样的“整数1”,强化认识:直条的是平均分成10份,格子的是平均分成100份,立体的是平均分成1000份。立体图在看的时候,只要数正面的。

  2、练一练:(题略)

  (1)学生独立完成再交流。“6角5分”要先想成“65分”。说说每个小数的含义。

  (2)继续完成第2题。指名读一读。

  3、完成练习五第1~5题

  (1)下面每个图形都表示整数“1”,涂色表示它下面的分数,并在括号里写出小数。

  学生完成后,再指名联系图中的涂色部分说说每个小数的具体含义。

  (2)读出下面各数,并把它表示的几分之几写在边上。

  (3)写出下面各数,并说说各是几位小数

  (4)在括号里填上合适的小数。(可选择第2、3个重点交流。突出一个“补0”问题。)

  (5)把下面各数改写成用“元”(“米”)作单位的小数

  指名说一说。有困难的再给予指导。

  五、全课总结:

  这节课我们认识了小数,你懂得了哪些知识?

五年级数学教案3

  教学目标:

  知识与技能:会解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。

  过程与方法:引导学生用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。

  情感与态度:在学习中使学生明白时间的宝贵,养成珍惜时间的好品质。

  教学重点:

  用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。(加法计算)

  教学难点:

  学生对于题意的理解。

  教学过程:

  一、导入阶段

  出示

  小丁丁和同学约好上午9时15分在动物园门口集合,小丁丁早晨7时48分出门,路上用了1小时23分。

  (1)在这段文字叙述中你获得了哪些信息

  上午9时15分在动物园门口集合;

  早晨7时48分出门;

  路上用了1小时23分。

  (2)9时15分、7时48分、1小时23分各表示什么,有什么不同?

  9时15分、7时48分表示时刻,是指某一事件发生的时候。

  1小时23分表示时间,是指某一事件经过了多久。

  (3)出示问题“小丁丁几时几分到达动物园门口”这是求时间还是求时刻?

  是求时刻

  (4)今天我们就要来讨论关于时间的计算的问题。(出示课题)

  [对于学生经常会混淆的.“时间”“时刻”这2个数学用语进行简单的辨析。使学生在解决问题时能明确地知道是要求什么?]

  二、中心阶段

  1、请学生试着计算。

  2、汇报

  (1)画图

  (2)竖式算

  注意:这步计算,“分”的计算满60要向“时”进1,因为分与时之间的进率是60。

  答:小丁丁9时11分到达动物园门口。

  3、比较2种方法得出2种方法都很好,都很直观、很简洁。

  4、小结

  我们可以利用时间线段图和竖式来解决某一时刻经过多少时间会到哪一个时刻的计算问题。

  三、练习阶段

  7时50分+45分=()时()分

  8时26分+2小时37分=()时()分

  15分18秒+3分52秒=()分()秒

五年级数学教案4

  课型:新授

  教学内容:教材P7及练习二第3、5、6、7、10题。

  教学目标:

  知识与技能:使学生进一步掌握小数乘法的计算法则,并能正确地运用这一知识进行计算。

  过程与方法:理解倍数可以是整数,也可以是小数,学会解答有关倍数是小数的实际问题。

  情感、态度与价值观:养成认真计算与及时检验的学习习惯。

  教学重点:运用小数乘法的计算法则正确计算小数乘法。

  教学难点:正确点出积的小数点;初步理解和掌握:当乘数比1小时,积都比被乘数小;当乘数比1大时,积都比被乘数大。

  教学方法:观察、分析、比较。

  教学准备:多媒体。

  教学过程

  一、复习准备

  1.口算。0.9×6 7×0.08 1.87×O

  0.24×2 1.4×0.3 0.12×6 1.6×5 4×0.25 60×0.5

  指名学生口算,然后集体订正。

  2.思考并回答。(1)做小数乘法时,怎样确定积的小数位数?

  (2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。

  3.揭示课题:这节课我们继续学习小数乘法。(板书课题)

  二、情景引入

  1.教学例5。师:同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的非洲野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”

  学生观察情境图,提取信息:

  所求问题:(鸵鸟的最高速度是多少千米/小时)

  所需条件:(非洲野狗的最高速度是56千米/小时,鸵鸟的'最高速度是非洲野狗的1.3倍)

  思路分析:

  (1)引导学生理解小数倍数的含义:谁来说一说“鸵鸟的最高速度是非洲野狗的1.3倍”是什么意思?(鸵鸟的最高速度是非洲野狗的1.3倍,表示鸵鸟的速度除了有一个非洲野狗那么快,还要快。)

  (2)追问提高学习新知的兴趣:

  ①非洲野狗能追上他们吗?(非洲野狗追不上鸵鸟。)

  ②“鸵鸟的最高速度是多少?”该怎样列式计算呢?(生回答:56×1.3)

  ③为什么这样列式?(求56的1.3倍是多少,所以用乘法。)

  (3)通过学生的回答引导学生小结:倍数关系也可以是比1大的小数。

  让学生独立计算出鸵鸟的最高速度,并集体订正。

  (4)指导学生用估算进行验算:请同学们看这个算式及结果,你认为对吗?你是怎么验证的?(板书验算,完善课题)

  学生可能会有以下几种验算的方法:

  ①用原式再计算一遍。

  ②把这个算式的因数交换一下位置,再算一遍。就可知道对与否。

  ③观察法:观察小数位数或第二个因数比1大还是比1小。

  ④用计算器进行验算。

  师小结:不管用哪一种方法来检验都可以,根据自己的情况,喜欢用那一种就用那一种来验算。

  (5)师:请同学们打开书,看一看书上的小朋友算得对吗?为什么?

  生:因为两个因数中,56是整数,因数1.3中只有1个小数,所以积中小数点的位置点错了,应该点在2与8之间,即积应为72.8。

  师:很好!在计算小数乘法时,每个小朋友都要养成认真做题、仔细检查的好习惯。

  师:通过刚才同学们的计算、验算得出鸵鸟的最高速度是72.8千米/小时,比起非洲野狗的速度怎么样?非洲野狗能追上鸵鸟吗?说明刚才我们的想法怎样?(学生小组讨论交流,由代表发言,教师点评。)

  2.看乘数,比较积和被乘数的大小。刚才有同学提到56×1.3式子中第二个因数比l大,所以积就比被乘数大,现在我们来研究一下这个问题。

  三、巩固练习

  1.完成教材第7页“做一做”。先让学生观察两道算式中的因数和积,进行判断,说出理由;再让学生独立计算,并用自己喜欢的验算方法进行验算。最后集体订正。

  2.练习二第3题。先让学生独立判断。集体订正时,让学生说明道理,明白每一小题错在什么地方。

  四、课堂小结。当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。

  作业:5、6、7

  课外作业:教材第9页练习二第10题。

  板书设计:

  求一个数的小数倍数是多少及验算

五年级数学教案5

  教学目标

  1.理解和掌握循环小数的概念.

  2.掌握循环小数的计算方法.

  教学重点

  理解和掌握循环小数等概念.

  教学难点

  理解和掌握循环小数等概念.

  教学过程

  一、铺垫孕伏

  (一)口算

  0.8times;0.5= 4times;0.25= 1.6+0.38=

  0.15divide;0.5= 1-0.75= 0.48+0.03=

  (二)计算

  21divide;3= 15divide;3= 12divide;3= 10divide;3=

  教师提问:通过计算,你发现了什么?

  二、探究新知

  (一)教学例7

  例7 10divide;3

  1.列竖式计算

  教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)

  使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

  所以10divide;3=3.33……

  (二)教学例 8

  例8 计算58.6divide;11

  1.学生独立计算

  2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,

  所以58.6divide;11=5.32727……

  3.观察比较 10divide;3=3.33…… 58.6divide;11=5.32727……

  教师提问:你有什么发现?

  (小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)

  4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

  教师板书:循环小数.像3.33……和5.32727……是循环小数.

  5.简便写法

  3.33……可以写作 ;

  5.32727……可以写作

  6.练习

  把下面各数中的循环小数用括起来

  1.5353…… 0.19292…… 8.4666……

  (三)教学例9

  例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)

  1.学生独立列式计算

  130divide;6=21.666……

  asymp;21.67(十克)

  答:小汽车大约装21.67千克汽油.

  2.集体订正

  重点强调:保留两位小数,只要除到小数点后第三位即可.

  3.练习

  计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.

  28divide;18 2.29divide;1.1 153divide;7.2

  (四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?

  1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的.也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.

  2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10divide;3=3.33……,小数部分的位数是无限的'小数,叫做无限小数,循环小数是无限小数.

  三、课堂练习

  (一)计算下面各题,哪些商是循环小数?

  5.7divide;9 14.2divide;11 5divide;8 10divide;7

  (二)下面的循环小数,各保留三位小数写出它们的近似值.

  1.29090…… 0.0183838……

  0.4444…… 7.275275……

  四、布置作业

  (一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.

  9.4divide;6 38.2divide;2.7 204divide;6.6 6.64divide;3.3

  (二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)

五年级数学教案6

  活动目标

  通过发豆芽活动,了解生活中的相关知识,运用多种途径查询和收集相关资料,并能运用数学的方法记录和描述豆芽的生长情况,培养同学们动手实践、分析问题以及解决问题的能力。

  活动准备

  教师收集相关资料,并先做一次实验。学生分组准备黄豆、绿豆各50g,以及发豆芽的器皿。

  活动过程

  一、提出问题,揭示课题?

  1.师:同学们,你们知道豆芽的生长过程吗?你自己发过豆芽吗?

  2.学生根据查询的资料和咨询科学教师得到的知识进行交流。

  3.根据学生的交流,提出:我们也来试一试发豆芽。

  揭示课题:发豆芽。

  二、讨论交流,得出活动步骤

  1.提问:发豆芽要做哪些准备?怎样记录发豆芽的过程呢?对最后的记录如何分析呢?

  结合学生的交流,得出本次活动的主要步骤:调查与收集;发制与记录;整理与分析;推测与应用。

  2.学生结合教材了解4个环节应该做什么,并在全班交流。

  教师重点提问:发豆芽的统计图画什么好?为什么?如何计算发豆芽的盈利情况?

  三、学生分组活动

  1.教师演示发豆芽的过程。

  2.教师提出要求:

  (1)发豆芽活动要做的事情比较多,我们要分组进行,每组5个人。

  (2)为了方便观察与记录,我们都将豆芽统一放在教室里进行观察,每天每个组在固定时间进行浇水。

  3.各组学生进行发豆芽实验。

  时间大约是6天。教师对各组实验的情况进行适时的指导,对各组的记录进行及时督促与检查。各组在发豆芽完成后,及时进行数据分析,制作好相应的统计图表,写好分析总结。

  四、小组交流,感受价值

  交流发豆芽的具体做法和注意事项。

  五、观察、记录、分析

  1.观察豆芽的生长情况。(大约6天时间)

  2.记录豆芽的生长情况。(每天进行记录)

  3.把豆芽的生长情况制成统计图表。

  4.分析统计图表,写好总结。

  六、总结反思

  小组结合统计图汇报豆芽生长情况,说说在发豆芽活动中的收获。

  注:五、六两个教学过程在课外进行。

  [简评:本课设计采取课内课外相结合的.方式,突出发豆芽的相关资料收集,讨论发豆芽的活动步骤,对发豆芽活动进行分析、交流、评价。通过分组活动,培养学生的合作意识与能力;统一在教室进行,便于学生观察、比较、交流、互相激励。同时,把发豆芽活动的重点放在依据实验数据制作、分析统计图表上,以体现数学在生活中的价值,体现综合应用的数学味。]

五年级数学教案7

  【教学目标】

  1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

  2.使学生通过自主探索,掌握2、5、3的倍数的特征。

  3.逐步培养学生的数学抽象思维能力。

  【重点难点】

  1.掌握因数、倍数、质数、合数等概念的联系及其区别。

  2.掌握2、5、3的倍数的特征。

  3.质数和奇数的区别。

  【教学指导】

  由于本单元内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度,所以教学应注意以下两点:

  1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的,倍数的个数是无限的等结论自然也就掌握了。对于后面的公因数、公倍数等概念的理解也就水到渠成了,要引导学生用联系的方法去掌握这些知识,而不是机械地记忆一堆支离破碎,毫无关联的概念和结论。

  2.由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但在过去的数学教学中,一些老师往往忽视概念的本质,而让学生死记硬背相关概念或结论,导致学生无法理清各概念间的前后承接关系,达不到融会贯通的程度,而学生到了五年级,抽象能力已经有了进一步提高,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数的个数都是无限的结论,逐步形成从特殊到一般的归纳推理能力等等。

  【课时安排】

  建议共分7课时

  1.因数和倍数2课时

  2.2、5、3的倍数的特征3课时

  3.质数和合数2课时

  【知识结构】

  因数和倍数(1)

  学习内容认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。第1课时课型新授

  学习目标1.从操作活动中理解因数和倍数的意义,会

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情

  教学重点理解因数和倍数的含义

  教学难点判断一个数是不是另一个数的因数或倍数。

  教具运用课件

  教学方法二次备课

  教学过程

  【复习导入】

  1.教师用课件出示口算题。

  10÷5=16÷2=12÷3=100÷25=150×4=

  220÷4=18×4=25×4=24×3=20×86=

  学生口算

  2.导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

  (板书课题:因数和倍数(1)

  【新课讲授】

  1.学习因数和倍数的概念

  (1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

  学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

  教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。

  谁来说一说其他的式子?

  学生回答。

  教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的.倍数,除数和商是被除数的因数。

  (2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

  学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

  学生回答,教师板书:倍数与因数是相互依存的。

  2.举例概括

  教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

  教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

  教师同时板书。

  教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

  引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

  如:m÷N=P,m、N、P都是非0自然数,那么N和P是m的因数,m是N和P的倍数。

  A×B=c,A、B、c、都是非0自然数,那么A和B是c的因数,c是A和B的倍数。

  你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

  3、9、15、21、36

  学生独立思考并回答。

  【课堂作业】

  1.完成教材第5页“做一做”。

  2.完成教材第7页练习二第1题。

  3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  【课堂小结】

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  板书设计因数和倍数(1)

  在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  因数和倍数一般指的是自然数,而且其中不包括0。

  倍数与因数是相互依存的。

  教学反思

  【作业设计】

五年级数学教案8

  1、教学目标

  1.使学生在具体情境中认识列、行的含义,逐步制定统一规则,初步理解数对的含义,会用数对表示物体的位置;

  2.使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念;

  3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  2、学情分析

  从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。

  3、重点难点

  教学重点:

  体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。

  教学难点:

  观察者角度的理解,方格线上和方格中位置描述的异同理解。

  4、教学过程

  4.1教学过程

  4.1.1教学活动

  活动1【讲授】用数对确定位置

  一、探讨描述位置两要素

  师:今天,谢老师的好朋友带来一份神奇的礼物。有请X先生

  第一关:找地鼠

  师:请描述小地鼠的位置。

  师:还能怎么说?

  生:从右往左数第2个。

  师:这只地鼠的位置呢?

  生:从上往下数第3个,从下往上数第2个。

  师:看来,描述一条线上的位置,我们只需要一个数。

  师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?

  师:我们全班来玩一个小游戏,请一位同学上台背对屏幕,其他同学描述地鼠的位置帮助他猜?

  师:你来说,谁有不同的说法,还有吗?

  师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。

  师:(面向猜的同学)听了这么多说法,能猜到位置吗?

  师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)

  师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(X先生录音)

  二、从列和行引出数对确定位置

  师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。

  师:(我们进入第二关,确定你的位置)从游戏回到教室里,像同学们的座位有的竖着排,有的横着排,数学中统一规定,像这样的竖排,我们称作列(板书:列),确定第几列一般是从左往右数,请第一列同学起立。你是怎样数的?有道理。这位同学,我看出了你的犹豫,有什么想说的?

  师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。

  师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。

  师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。

  师:回到大屏幕,当教室中的座位画在图上就成了这样。面对这幅图,谁是观察者?站在我们的角度,从左往右数第一列在哪里?第二列,接着……

  师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。

  师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。

  师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(2 3)什么意思?(2表示第2列,3表示第3行)还可以怎么说(3 2)。这个想法很好,更加简洁了。

  师:这些都是张亮位置的描述方法,你喜欢哪一种?

  (1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。

  师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)

  师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。

  师:剩下的三个位置也用数对表示吧。写在草稿纸上。

  师:四个数对中有两个比较特别,谁来说?

  师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。

  师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。

  师:你是怎样判断的?

  师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(X先生评价)

  三、点子图中的位置表示

  师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。

  师:X先生又有话说:(第三关找场馆。)这是动物园的平面图,我们一起来看看。大门的位置是(数对(3,0))什么意思?

  师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。

  师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。

  师:再次请出X先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)

  师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?X表示几,Y表示几。请拿出练习纸,用圆圈表示4盆小草的.位置。

  师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。

  四,数对的日常运用

  师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。

  国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)

  这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)

  师:学到这里我不禁想问:这么简单准确的数对又是谁发明的呢?数对背后又隐藏着怎样的故事呢?感兴趣的同学可以课后百度:笛卡尔和蜘蛛

  五、拓展总结。

  师:同学们我们还差一块拼图了,听听X先生带来了什么问题:第五关:确定位置,需要几个数?)

  生:需要两个数。

  师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。

  师:什么情况下我们用一个数就能确定位置?(直线上的)。

  师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。

  师:听听X先生对大家的最终评价吧。

  师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。

五年级数学教案9

  教学内容:p53第10-13题

  教学目标:

  1、用分数的有关知识,熟练解决求一个数是另一个数几分之几的实际问题

  2、能沟通知识之间的相互联系,提高解决问题的能力

  教学重点:熟练解决求一个数是另一个数几分之几的实际问题

  教学流程

  一、练习与应用

  1第52页第10题

  先做第一题:五一班一共有学生40人,其中女生有21人。女生占全班人数的几分之几?

  (1)先让学生联系分数的意义口头分析:把全班人数看作单位“1”,平均分成40份,女生人数占了其中的21份,所以女生人数占全班人数的21/40。

  (2)再让学生根据分数与除法的关系列出算式,并写出得数。

  (3)独立做下面两题

  (4)交流

  2做第11题

  (1)学生先独立练习

  (2)引导比较A三道题目计算方法有什么相同?

  B算式中选择的除数有什么不同?

  C从中还能想到些什么?

  (3)沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。

  3做第12题练习后加强对比

  (1)计算方法有什么相同的地方?

  (2)算式中选择的被除数为什么不同?除数为什么相同?

  (3)商的表示方法有什么不同?

  4做第13题练习后加强对比

  要引导学生区别清楚:一:第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位“1”,并把它平均分成6份,用分数表示其中的.一份,得到的分数不注明单位名称。二:第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称“米”。

  5思考题

  方法一:可以根据每个分数中分子与分母的大小关系来判断。

  方法二:通过画图帮助思考

  二、课堂

  完成补充习题上的练习。

五年级数学教案10

  【教学内容】新世纪小学数学五年级下册《长方体的认识》

  【教学目的】

  1.通过观察实物、动手操作等活动,使学生认识长方体的特征,形成长方体的概念。

  2.通过建立图形的表象的过程,发展学生的空间观念。

  3.通过动手操作,小组合作学习,培养学生的立体思维,使学生在合作交流中体验到学习数学的乐趣,体验到生活中处处有数学。

  【教学用具】长方体模型课件

  【教学过程】

  一、情境创设新课引入

  1.同学们听说过北京大学吗?上北大是老师读书时的梦想。你能从北大校区中找到我们曾经学过的图形吗?

  2.生活中,你还见过哪些物体的形状是长方体?

  3.揭题:这节课进一步认识长方体。(板书课题)

  二、引导探究小组合作

  1.认识长方体各部分的名称。

  (1)游戏:你们会玩摸长方体的游戏吗?

  A你怎么确定摸到的一定是呢?还有什么方法?(他是用“面”、“棱”、“顶点”描述这个长方体的。)

  B小组内互相说一说:什么是长方体的面、棱、顶点?(我想什么是长方体的“面、棱、顶点”你们可能有所了解,在资料袋中也有提示说明。)

  C全班反馈

  D教师小结:刚才同学们用自己的语言描述了长方体的面、棱、顶点。

  2.探究长方体面、棱、顶点的特征

  A它们之间有联系吗?各有什么特征?

  B分小组活动。(下面小组分工合作,利用学具,通过摸一摸,数一数,量一量,剪一剪,比一比,看看有什么精彩的发现?将发现写在记录表上。)

  C全体发馈,同学提问。(根据小组的发现,谁能向他们提出问题?)

  D你们还有问题吗?

  E教师提问:正方体与长方体有关系吗?为什么说是特殊的长方体?(预设:认识长方体长、宽、高特征;正方体与长方体的关系)

  F教师小结:刚才同学们用自己的方法研究了长方体的特征,你可以画出一个长方体吗?

  3.教学如何画长方体。(如果这样放最多可以看见他的几个面?还有哪几个面看不见?)(在画图时,除了画前、后两个面是长方形,其它的`面看上去成了平行四边形,实际上它还是长方形)

  三、运用新知体验价值

  1.如果现在只看到长方体的长、宽、高,你还能画出一个长方体吗?(闭上眼睛,画长方体。)

  2.说出长方体各个面的面积。说出长方体各个面的面积。

  3.猜一猜:根据长、宽、高长度,它可能是生活中的什么物体?

  4.做一个如图的长方体宝宝床的床架,至少需要多少分米长的木条?

  5.你准备选择下面哪一种尺寸的床板?(单位:分米)

  32×920×10

  四、全课总结拓展创新

  1.想一想:为何北大校区众多建筑设施的外观造型都是长方体呢?

  2.实验活动:用准备的材料做一个长方体(再次体验长方体的特征)。

五年级数学教案11

  (一)、实践操作

  1、组织谈话

  师:上节课我们已经认识了平行四边形,同学们都学了哪些知识,谁还记得。

  生:两组对边分别平行的四边形叫平行四边形。

  生:认识了平行四边形的高。

  2、媒体演示

  (出示课件:小山羊的困惑。配音:一只莽撞的小山羊把一个长方形撞倒了,变成了一个平行四边形,于是小山羊就发现了一个问题,是什么问题呢?)

  师:现在你能发现什么问题呢?

  生:为什么会变成平行四边形呢?面积是否变了呢?

  师:小山羊到底发现了什么问题?你们想不想知道呢?

  (出示问题:现在的平行四边形和以前的长方形谁的面积大呢?)

  生:一样大。

  生:我认为长方形面积大,平行四边形面积小。

  师:现在有两种意见,大部分同学认为面积一样大,个别同学认为长方形面积大。到底谁说得对呢?你们能不能想个办法比出这两个图形面积的大小?

  师:有什么方法验证一下它们的面积是否一样大呢?

  生:可以算一算它们的.面积的大小。

  师:怎样算呢?

  生: 长方形的面积 =长×宽(板书)

  平行四边形的面积 =底×高

  师:你是怎样知道的?

  生:我是看书知道的。

  生:我是家长告诉的。

  师:那么,为什么平行四边形的面积=底×高,公式是怎么来的呢?这节课,我们就重点来研究平行四边形面积公式的推导过程?

  师:下面就用你自己手中的学具,试着把平行四边形转化成我们已经学过的图形。

  (小组合作,4人一组,然后在全班汇报)

  (二)交流汇报

  师:你转化后的图形是什么?你是怎么转化的呢?谁能大胆的上来说一说。

  生:是长方形,我是沿着高剪的。

  师:你为什么这样剪,不沿着高剪开行不行?

  生:长方形的四个角都是直角,所以只有沿着高剪开才能转化成长方形。

  师:这个长方形和原来的平形四边形个部分之间有什么关系呢?同学们仔细观察(媒体演示转化的过程:找出底,画高,剪开,平移,拼补,转化成了长方形)。

  师::长方形和原来的平行四边形有什么关系?

  生:转化后的图形是长方形,我发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积是底乘高。

  师:谁再来完整的说一遍。

  师:我们通过转化推导出来的面积计算公式和书本上的一样。同学们真是了不起,会自己发现数学知识了。

  师:平行四边形的面积计算公式还可以用字母表示呢?你知道怎样表示吗?(学生说,教师板书)

  生:公式是s=ah

  师:通过刚才的学生,我们知道了平行四边形面积计算的公式,下面一起来解决一些具体的实际问题。

  (三)巩固发展

  1.口算下列各题。

  生:第一个平行四边形的面积是12平方厘米。

  生:第二个平行四边形的面积是20平方分米。

  生:第三个平行四边形的面积是8平方米。

  2.辨析性练习:

  师:你能根据图中给出的数据求平行四边形的面积吗?(课件出示下图,单位:厘米)

  生:是54平方厘米。

  生:我不同意,因为……

  师:为什么说面积不是54平方厘米?

  生:我也认为不是9×6=54(平方厘米),因为6厘米这条高不是9厘米这条底上。如果沿6厘米这条高剪开拼成长方形,长方形的长就是6厘米这条高,长方形的宽却不是9厘米这条底。所以不能用9×6=54。

  师:谁再来说说。

  师:让我们来看看。下面你能计算了吗?(课件出示)

  生:2×9=18;3×6=18

五年级数学教案12

  【教学目标】

  1、知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

  2、认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

  3、理解和掌握分数的基本性质,会比较分数的大小。

  4、理解公因数与公因数、公倍数与最小公倍数的意义,能找出两个数的公因数与最小公倍数,能比较熟练地约分和通分。

  5、会进行分数与小数的互化。

  【重点难点】

  1、分数的意义和分数的基本性质。

  2、理解单位“1”的含义。

  【教学指导】

  1、充分利用教材资源,用好直观手段。

  本单元教材在加强教学与现实世界的联系上做了不少努力,同时,教材还运用了多种形式的直观图式数形结合,展现了数学概念的几何意义,从而为老师与学生提供了丰富的学习资源。教学时,应充分利用这些资源,发挥形象思维和生活体验对于抽象思维的支持作用。

  2、及时抽象,在适当的水平上,构建数学概念的意义。

  为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。因此,在充分展开直观教学,让学生获得足够的感性认识的基础上,要不失时机地引导学生由实例、图式加以概括,构建概念的'意义。

  3、揭示知识与方法的内在联系,在理解的基础上掌握方法。

  在本单元中,假分数化为带分数或整数,约分与通分,分数与小数互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。因此,教学时不宜就方法论方法,而应突出方法的过程,使学生明白操作方法背后的算理,这样就能依靠理解掌握方法,而不是依赖记忆学会操作。

  【课时安排】建议共分17课时

  1、分数的意义3课时

  2、真分数和假分数2课时

  3、分数的基本性质2课时

  4、约分4课时

  5、通分4课时

  6、分数和小数的互化2课时

五年级数学教案13

  一、主要教学内容

  ㈠数与代数

  1、第一单元“小数除法”。本单元包括小数除法,积商近似值,循环小数、小数四则混合运算等内容。结合具体情景,经历探索小数除法计算方法的过程,初步体验转化的数学思想。了解在生活中有时只需要求积商的近似值,掌握求近似值的方法,培养估算意识。初步了解循环小数,运用小数四则运算解决日常生活中的简单问题。

  2、第三单元“倍数与因数”

  本单元是在学生学过整数的认识、整数的四则计算等知识的基础上学习的,学习的主要内容有:认识自然数,倍数与找倍数,2、5、3倍数的特征,因数与找因数;质数与合数,奇数与偶数等知识。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。本单元的具体学习内容安排了六个情境活动:在“数的世界”活动中,主要是认识倍数和因数;在“探索活动(一)——2、5的倍数的特征”中,学生将经历探索2、5倍数特征的过程,理解2、5倍数的特征,知道奇数、偶数的含义;在“探索活动(二)——3的倍数的特征”中,学生将经历探索3的倍数的特征的过程,理解3的倍数的特征;在“找因数”活动中,利用直观的拼图游戏,让学生体会、掌握找因数的直观方法;在“找质数”活动中,引导学生经历用“筛法”制作质数表的过程,理解质数和合数的意义,并在活动在过程中,让学生了解一些数学史,丰富对数学发展的认识,感受数学文化的魅力;在“数的奇偶性”活动中,尝试运用“列表”、“画示意图”等解法问题策略发现规律,运用数的奇偶性解决一些简单问题。通过本单元的学习,学生将经历探索数的有关特征的活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数以及知道质数、合数;将经历2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步合情推理的能力;在探索数的特征的过程中,体会观察、分析归纳或猜想验证等探索方法,在数学活动中体验数学问题的探索性和挑战性。

  3、第五单元“分数”

  在学习本单元内容前,学生已初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母分数加减法,以及能初步运用分数表示一些事物、解决一些简单的实际问题。本单元在此基础上引导学生进一步理解分数的意义,学习分数的再认识、分数与除法的关系、真分数、假分数、分数大小变化规律、公约数、约分、公倍数、通分、分数的大小比较等知识。这些知识的学习是进一步学习分数四则计算、运用分数知识解决实际问题的基础,是分数教学的重点。本单元的具体学习内容安排了九个活动情境:在“分数的再认识”活动中,通过具体的情境,进一步理解分数的意义,体会“整体”与“部分”的关系,了解一个分数对应的“整体”不同,则所表示的具体数量也不同;在“分饼”与“分数与除法”两个活动中,学生将知道分数的分类标准,并能掌握带分数与假分数的相互转化的方法;在“找规律”的活动中,经历探索分数大小不变规律的过程,理解分数的基本性质,并能根据分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数;在“找最大公因数”与“约分”两个活动中,学生将认识公因数与最大公因数、并能运用这些知识进行正确地约分,也为后续理解、掌握通分的方法打下了基础;在“去少年宫”与“分数的大小”两个活动中,学生将认识公倍数与最小公倍数,并能运用这一知识,会正确地通分与比较分数的大小。通过本单元的学习,学生将进一步理解分数的`意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。

  ㈡空间与图形

  1、第二单元“轴对称和平移”

  结合实例,感知平移轴对称现象;能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形;通过观察、操作,认识轴对称图形,并能在方格纸上画出简单图形的轴对称图形。

  2、第四单元“多边形的面积”

  本单元学习的内容主要有:平面图形面积大小的比较方法、平行四边形面积的计算方法、三角形面积计算的方法以及梯形面积计算的方法等。

  2、第六单元“组合图形的面积”

  本单元的主要内容有:组合图形面积的计算与生活中各种不规则图形面积的

  估计与计算。在第二单元中,学生已经学习了平行四边形、三角形与梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,这也是提高学生综合能力的重要平台。

  本单元的具体学习内容安排了两个情境活动:在“组合图形的面积”中,重点介绍组合图形的形成以及计算组合图形的分割方法;在“探索活动——成长的脚印”中,主要学习不规则图形面积的估计与计算。通过这些内容的安排,让学生形成解答组合图形的基本能力。

  ㈢统计与概率

  第六单元“可能性”

  本单元学习的主要内容有:用分数表示可能性的大小与运用分数表示可能性大小的知识设计日常生活中的方案。在二年级时,学生已经学习了客观事件出现的可能性的,在三年级时,他们学习了客观事件出现可能性的大小,认识到可能性大小的出现是与相关的条件有密切的关系,在四年级时,教材安排游戏公平的活动,让学生认识等可能性。

  本册教材安排的综合应用内容将进一步整合数与代数、空间与图形、统计三个领域的内容,并进一步加强课堂数学知识与现实生活中的实际问题的结合,以提高学生综合实践的能力。本册教材安排了三个集中性的专题综合应用内容:在“数学与交通”的专题综合应用活动中,安排了“相遇”、“旅游费用”以及“看图找关系”三个小专题的内容,通过这些活动,以提高学生解决问题的策略思想;在“尝试与猜测”的专题综合应用活动中,安排了“鸡兔同笼”与“点阵中的规律”的两个小专题,通过这两个活动,引导学生关注与思考一些日常生活中的现象,从中能发现一些特殊的规律。通过对生活中一些现象分析与解决,让学生进一步体会数学与日常生活的密切联系。二、课时安排:(见附表)

  第一单元:小数除法

  教学目的要求

  1.通过具体情境,进一步理解除法的意义,探索并掌握小数除以整数的计算方法。

  2.通过“打电话”的情境,利用已有知识,经历探索除数是小数的除法计算方法的过程,体会转化的数学思想。

  3.通过人民币和外币的兑换活动,掌握求积、商近似值的方法,能够按要求求出积、商的近似值。

  4.通过计算蜘蛛和蜗牛每分爬行多少米,发现余数和商的特点,知道什么是循环小数,并会用四舍五入法对循环小数取近似值。

  重点与难点说明

  小数的除法,分为三种情形分别进行探索:一是小数除以整数,二是整数除以整数;三是小数或整数除以小数。

  小数除以整数的情形,结合实例,探索并理解可以把被除数当成整数,变成整数的除法求得商后,只要商的小数点与被除数的小数点对齐就可以了。

  整数除以整数的情形,在以往学过的整数的除法中,只能求得整数的商及余数。但在小数的除法中,整数的余数可以化为更小的单位(小数单位),因此可以继续平均分(做除法),得到的商是小数。所以,今后遇到整数除以整数的情形,可以把被除数(整数)的末尾添上小数点,在这个小数点后面可以添上所需要的“0”。这样,整数除以整数的情形又转化为上述小数除以整数的情形了。

  除数是小数的情形,应用商不变规律,根据把除数变成整数的需要,把被除数和除数扩大相同的倍数,就把除数是小数的除法转化成上述除数是整数的除法了。

  在实际应用中,对于复杂的小数的乘法或除法运算,可以用计算器进行计算,并且会根据要求,取积或商的近似值。

  认识循环小数,结合竖式除法的过程,体会出现了什么情况,不用再除下去,就能知道商一定是循环小数。

  第三单元目标:

五年级数学教案14

  设计说明

  本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:

  1、把新知融入到有趣的情境中,激发学生的学习兴趣。

  在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的目的。

  2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。

  在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。

  设计意图:

  在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的.过程,形成知识表象。

  课前准备

  教师准备PPT课件长方形纸

  教学过程

  (1)复习巩固,情境导入,激发兴趣

  1、求下面每组数的公因数。

  42和50 15和5 8和21 18和12

  2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。

  (2)认识约分

  1、尝试“变分数”。

  课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。

  让学生了解“变化”的要求:

  ①这个分数要与的大小相等。

  ②这个分数的分子、分母要比的分子、分母小。

  2、了解约分的概念。

  ①所变出的分数与原分数有什么关系?

  ②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

  ③请学生说一说所变的分数是怎样得来的。

  观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。

  3、认识最简分数。

  ①约分后的分子、分母能否再变小了?为什么?

  ②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。

  4、说出几个最简分数,强化最简分数的概念。

  (3)合作交流,总结方法

  1、讨论:你能根据我们化简的过程找到约分的方法吗?

  2、小结。

  教师板书约分时一般采用的两种方法:

  ①逐步约分法。

  如约分时,依次用12,18的公因数2和3去除,最后约分成。

  ②一次约分法。

  如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。

  3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。

五年级数学教案15

  整理和复习

  教学要求掌握统计的步骤(数据收集与数据整理),会认识统计表、会填充统计表。掌握较复杂的求平均数的应用题的解答方法。

  教学准备投影片(仪)

  教学过程

  一、边练习边复习

  学生在课本上自己完成,并根据题目体会:

  1.分段对数据整理的方法

  2.怎样从复式统计表中获取信息。

  3.求平均数应用题应该注意什么问题?

  二、学生小组合作学习

  1.统计的.步骤是什么?对应的方法是什么?

  2.求平均数应用题的思路是什么?(分什么;按什么分)

  三、课堂实践

  练习四的1~3题。

  四、课外实践

  练习四的第4题。

  课后反思:

  学生习惯于用自己的方法进行学习,因此在教学中应该鼓励学生大胆地去尝试,用多样化的方法方式进行探索。