
圆的周长教案范文集合七篇
作为一位优秀的人民教师,就不得不需要编写教案,教案是教学活动的依据,有着重要的地位。写教案需要注意哪些格式呢?以下是小编精心整理的圆的周长教案7篇,欢迎大家借鉴与参考,希望对大家有所帮助。
圆的周长教案 篇1
教学内容:教材第62-64页圆的周长。
教学目标:
1、通过自主实践探索,理解圆的周长和圆周率的意义,掌握圆的周长计算公式,并能根据公式正确地进行计算。
2、经历观察、试验、猜想、证明等数学活动过程,培养学生初步的演绎推理能力,形成解决问题的一些基本策略。体会“由曲变直”的转化思想。
3、了解我国古代数学家对圆周率七窍的史实,进行爱国主义教育。
教学重难点:引导学生探究圆的周长与直径、半径的倍数关系和圆周率的含义。
教具学具准备:直尺、直径分别为5、6、7、8、9、10厘米的圆纸片、绳子、表格。
教学设计:
创设情境,揭示课题
创设情境,认识圆的周长。
师:李奶奶决定让小明和小刚进行一次跑步比赛。方案是这样的:让小明沿着一个边长为d米的正方形跑道跑,让小刚沿着一个直径为d米的圆形跑道跑(假设他俩跑的速度一样);方案一公布,小明就说不公平,同学们,你认为这个方案公平吗?要想判断这个方案是否公平,必须要知道他们所经过的路程是否相等,就必须要算出各自跑道的什么?(周长)
师:对,要知道他们所经过的路程是否相等,就必须要算出各自跑道的周长,这节课我们就一起来探讨圆的周长的知识。(板书课题:圆的周长)
设计意图:创设生动的教学情境,故事的引入给下面将要学习的内容做了一个情境铺垫,激发了学生的学习兴趣和学习热情,自然而然地引出新知。
引导探究,展开新课
1.情境导入,借助教具直观感知,认识圆的周长。
(1)出示教材62页情境图,想一想,要想计算分别需要多长的铁皮,实际上是求什么?(圆的周长)
(2)你知道圆的周长指的是什么吗?
让学生拿出课前准备好的圆片,指出哪一部分是圆的周长?
(3)围成圆周长的是一条什么线?
明确圆的周长的概念:围成圆的封闭曲线的长叫做圆的周长。
2.测量圆的周长。
(1)滚动法。
拿出一元硬币,提问:用什么办法才能知道一个圆的周长呢?(鼓励学生各抒己见,引导学生从多角度考虑)学生把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。
滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。教师强调:用滚动法进行测量时,要注意以下三点:①要做好标记;②不能滑动,要滚动;③要滚动一周,不能多,也不能少。
小结:对于较短的圆形物体的周长,我们可以用滚动法测出圆的周长。
(2)绕绳法。
课件出示:一个圆形水池,提问:要测量这个水池的周长用滚动法可以吗?那你们想出了什么好办法呢?(学生提出可以用绕绳法测量)
绕绳法:用一根绳子绕圆形水池一周,剪去多余的部分,再拉直量出绳子的长度,即可得出圆形水池的周长。提醒学生用绕绳法测量时,要注意以下两点:①一定要将绳子拉直再测量;②绳子是无弹性的。
(3)是不是所有的圆的周长都可以用滚动法和绕绳法测量呢?
教师甩动一端系着线的小球问:你们看到了一个什么图形?这个圆的周长能用上面提出的方法测量吗?
经过对比,感受滚动法和绕绳法两种测量方法的局限性。
3.操作实验,探究圆的周长和直径的关系。
(1)观察猜想:圆的周长与它的什么有关呢?
学生猜想:可能与它的直径或半径有关。
课件演示:圆的周长随着直径或者半径的变化而变化。
(2)动手操作,找出规律。
四人一组,合理地分配任务,分别量出圆片的直径和周长,并用计算器计算出周长和直径的比值,逐项填入表中。例如:
周长c(cm)直径d(cm)的比值(保留两位小数)
3.14213.14
9.533.17
12.643.15
15.853.16
31.4103.14
(3)观察表中记录的测量数据和计算结果。
①你发现周长与直径的比值有什么特点?(比值都是三点几)
②你认为每个圆的周长和直径是什么关系?(周长是直径的3倍多一些。板书:圆的周长总是直径的3倍多一些)
(4)进一步验证圆的周长总是直径的3倍多一些。
下面我们共同来验证一下之前得出的结论是否正确。(课件出示:圆的周长随直径的变化而变化,而周长和直径之间的比值却是一个定值)
(5)认识圆周率。
①圆的周长与直径的'比值是一个固定的数,有谁知道它叫什么?(圆周率)
②圆周率的概念是什么?(一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率)
③关于圆周率,你们还知道什么?(圆周率用希腊字母π表示,圆周率是一个无限不循环小数。它的值是3.1415926535……在实际的应用中,一般取它的近似值,即π≈3.14)
④感受文明,激发情感。
结合教材63页的资料介绍《周髀算经》中“周三径一”的说法,介绍祖冲之在求圆周率中做出的贡献。
(6)总结圆的周长的计算公式。
①根据刚才的探索,你能总结出圆的周长的计算公式吗?(结合学生回答,板书:圆的周长=圆的直径×圆周率=圆的半径×2×圆周率)
②如果把圆的周长用字母c表示,你们能总结出求圆的周长的字母公式吗?(c=πd或c=2πr)
③小结:圆的周长总是它直径的π倍。
(7)进一步明确复习题答案。
结合圆的周长的计算公式和正方形的周长计算公式,说一说小明和小刚谁先跑完?小明跑完一圈的路程是4d,小刚跑完一圈的路程是πd,4比π大,所以小刚先跑完。
4.学以致用。
课件出示例1,这辆自行车轮子的半径大约是33cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1km,轮子大约转了多少圈?
学生读题后自己完成。让学生板演。
c=2πr
2×3.14×33=207.24(cm)≈2(m)
1km=1000m
1000÷2=500(圈)
答:这辆自行车轮子转1圈,大约可以走2m。小明从家到学校,轮子大约转了500圈。
设计意图:让学生尝试做例1,解决生活中的实际问题,这样的设计把课堂交给学生,让学生成为学习的主人,在尝试的过程中,教师适时给予点拨引导,做学生学习的引路人。
巩固练习,提升能力
1.完成教材64页1题。
2.判断。
(1)圆的周长是直径的3.14倍。( )
(2)圆的周长等于圆周率与直径的乘积。( )
(3)当半径为3cm时,圆的周长为18.84cm。( )
(4)半圆的周长是圆周长的一半。( )
3.爸爸用卷尺量得圆桌面的周长是4.71m,这个圆桌的直径是多少?
4.完成教材66页7、8题。
课堂总结,评价拓展
本节课你有什么收获?
布置作业,巩固新知
教材66页9、10题。
板书设计:
圆的周长
圆周率:圆的周长和它直径的比值。π是一个无限不循环小数,通常取3.14。
圆的周长总是直径的3倍多一些。
圆的周长=圆的直径×圆周率=圆的半径×2×圆周率。
圆的周长教案 篇2
教学目标:
1、通过教学使学生学会根据圆的周长求圆的直径、半径。
2、培养学生逻辑推理能力。
3、初步掌握变换和转化的方法。
教学重点:
求圆的直径和半径。
教学难点:
灵活运用公式求圆的直径和半径。
教学过程:
一、复习。
1、口答。
4 5 8
2、求出下面各圆的周长。
C=d c=2r
3.142 23.144
=6.28(厘米) =83.14
=25.12(厘米)
二、新课。
1、提出研究的问题。
(1)你知道表示什么吗?
(2)下面公式的每个字母各表示什么?这两个公式又表示什么?
C=d C=2r
(3)根据上两个公式,你能知道
直径=周长圆周率 半径=周长(圆周率2)
2、学习练习十四第2题。
(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)
已知:c=3.77m 求:d=?
解:设直径是x米。
3.773.14 3.14x=3.77
1.2(米) x=3.773.14
x1.2
(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)
已知:c=1.2米 R=c(2) 求:r=?
解:设半径为x米。
3.142x=1.2 1.223.14
6.28x=1.2 = 0.191
x=0.191 0.19(米)
x0.19
三、巩固练习。
1、饭店的大厅挂着一只大钟,这座钟的分针的`尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?
2、求下面半圆的周长,选择正确的算式。
(1)3.148
(2)3.1482
(3) 3.1482+8
3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?
(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?20xx.14=125.6(厘米)
(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少? 20xx.14=125.6(厘米)
45分钟走了多少厘米? 125.6 =94.2(厘米)
4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?
四、 作业。
P65-66 第3、6、7、9题
教学追记:
圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对 的含义就理解得特别透彻,也学得有兴趣。
圆的周长教案 篇3
【教学内容】
《义务教育课程标准实验教材 数学》六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义。
2.通过对比分析掌握圆周长的计算公式。
3.能用圆的周长的计算公式解决一些简单的数学问题。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:推导圆的周长的计算公式,准确计算圆的周长。
难点:理解圆周率的意义。
【教学过程】
一、情景引入
出示一块钟表
问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?
学生猜想。
教师演示小秒针的运动过程,证实学生的猜想是否正确。
问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?
生:先计算出走一圈的路程有多长,在计算出走60圈的长度。
师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)
(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
二、动手量一量
学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。
物品名称
周长
直径
1号圆
2号圆
3号圆
4号圆
教师评价学生小组合作的情况。
(设计目的:强调学生的小组合作意识)
师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。
学生展示小组的成果。
(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)
三、对比分析
师:观察一下我们得到的几组数据,你发现什么规律了吗?
学生自由谈。
学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。
师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。
课件展示圆的周长的测量方法。
(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)
课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。
(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的'比值是一个定值,顺利得到圆周率的值)
小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。
你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?
学生自由谈。
我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计目的:通过学生讲故事渗透爱国主义思想)
小结2:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
圆的周长(用字母C表示)计算公式:C=πd或C=2πr
四、动手做一做
下面我们来看看怎样应用圆的周长计算公式来解决问题。
1.计算圆的周长
实物投影展示学生的解题过程
(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)
2.一个圆形喷水池的半径是5m,它的周长是多少米?
(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)
3.小组交流错误原因。(可让其他学生避免同样的错误)
(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)
4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。
(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)
五.你能说说在这一节课中你有什么收获吗?
可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。
六、课外合作:
小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。
(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
圆的周长教案 篇4
学情分析:
学生已经有了对周长的认识,只是研究圆的周长需要探索圆的周长与直径的关系,那么,对于圆的周长与直径的这个倍数关系,学生通过测量、计算是能发现的,然后再根据这一倍数关系推导出周长的计算方法。教学时,关键是引导学生能发现圆的周长与直径之间的倍数关系。
教学目标:
1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作能力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
教学重点:
推导并总结出圆周长的计算公式。
教学难点:
深入理解圆周率的意义。
教学过程:
备注:
活动一:创设情境,引起猜想:认识圆的周长
(一)激发兴趣
小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体
中找出一个圆形来,互相指一指这些圆的周长。
(三)讨论正方形周长与其边长的关系
1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2.怎样才能知道这个正方形的`周长?说说你是怎么想的?
3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总
是边长的几倍?
(四)讨论圆周长的测量方法
1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2.反馈:(基本情况)
(1)滚动--把实物圆沿直尺滚动一周;
(2)缠绕--用绸带缠绕实物圆一周并打开;
(3)折叠--把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3.小结各种测量方法:(板书)转化
曲直
4.创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
5.明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)
(五)合理猜想,强化主体:
1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反馈。
2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3.正方形的周长总是边长的4倍,再看这幅图,
猜猜看,圆的周长应该是直径的倍?
(正方形的边长和圆的直径相等,直接观察可发现,圆周长
小于直径的四倍,因为圆形套在正方形里;而且由于两点间
线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4.小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
活动二:动手操作,探索圆的周长与直径的关系。
圆的周长教案 篇5
第一课时 圆周长计算
教学内容:
圆周长计算公式的推导、周长计算(课本第62——64页的内容、练习十五第1题)。
教学目标:
1、认识圆的周长,理解圆周率的意义。
2、掌握圆周长的计算公式,会用公式正确计算圆的周长。
3、介绍祖冲之在圆周率方面的成就,进行爱国主义教育。
教学重难点:
1、圆的周长公式推导及运用公式计算圆周长是重点。
2、通过实验找出圆的周长与直径的关系—圆周率是难点。
3、关键是让学生动手操作测周长与直径。
教学准备:
学生准备:大小不同的圆柱物体,光盘。直尺或三角板、绳子。
老师准备:小黑板
教学过程:
一、复习铺垫(5分钟)
1、小黑板出示
(1)
(2)
10厘米 6分米
2、提出问题:
同学们,老师要用铁丝分别做成上面两个图形的框架,
(1)请同学们帮助老师算一算每个图形需要用多长的铁丝?
(2)、每个图形需要用多长的铁丝,是求什么的?
(3)什么是周长?周长的单位有哪些?
(4)、要求图(1)、图(2)的周长应该知道什么条件?
二、探索新知(25分钟)
(一)认识圆的周长(3
1、出示:圆的图形 和其他实物圆。
2、提问:
(1)这是一个什么形实物?
(2)老师要用铁丝给它箍紧,需要用多长的铁丝,是求什么的?圆周长指哪儿?
3、感知圆的周长: 让学生拿出光盘或其它实物圆摸一摸,进行感知。
4、怎样才能知道一个圆的周长呢?让学生猜一猜,说一说,。
(二)提示课题
在现实生活中,有很多的圆形物体的周长测着很不方便。我们能不能也像计算长方形、正方形周长一样找到计算圆周长的计算公式呢,今天我们一起来探讨如何找到圆周长的计算公式,来计算圆的周长。
板书课题------圆周长计算
(三)圆的公式推导
1、猜一猜,想一想,动手操作(8分钟)
(1) 提问:通过前面复习,我们知道长方形的周长与它的长和宽有关,正方形的周长与它的边长有关。那么请同学们想一想:
圆的周长与它的什么条件有关?
、独立思考后,前后桌四人交换意见。
、学生汇报:圆的周长和直径(或半径)有关。
继续提问:它们之间到底有什么的关系呢?
故事激趣
我国古代有一位伟大的数学家和文学家祖冲之就发现了圆的周长与它的直径之间的关系,这个发现是在1500年前。今天我们各位同学也当一回科学家,进行一次研究,来发现圆周长与直径之间到底有什么关系。
(2)、动手实验:(四人一组,合作完成) (一组测一个)
a、取出圆形纸板,量出圆形纸板的直径。
b、用绳子绕圆形纸板一周,绕圆一周的绳子长度,就是这个圆形的周长,然后测出绳子长度。 c、填到书中表内。
d、算出周长和直径的比值。
e、 汇报,老师把表画在小黑板上,并填表。
2、观查数据,发现规律:(5分钟)
观察表中数据,说一说你有什么发现?(四人一组,共同讨论,)
小组汇报:
同一个圆,它的周长是它的直径的3倍多一些。
3、认识圆周率(2分钟)
(1)、在学生发现圆周长与它的直径关系的基础上,老师明确:
刚才每一组同学测的圆大小都不同,但发现:任意一个圆的周长与它的直径的比是一个固定的数。即一个圆的周长是它的直径的3倍多一点。我们把这个比值,即这个固定的数(不变的数)给它起个名字叫圆周率。用字母π表示。 板书:圆周长=π 或 圆周长:它的直径=π 它的直径
(2)、让学生读一读( Pài )写一写。
(3)了解π的值。
A、π是一个无限不循环小数,π=3.1415926535..........
B、在实际应用中一般只取它的近似值,即π≈3.14.
4、圆周长公式推导:(5分钟)
老师:如果已知圆的直径,如何计算圆的周长。
圆周长= π×直径
如果周长用C表示:字母公式C=πd
知道半径,怎样求周长C=2πr
( 四)应用公式(2分钟)
教学例1:
(1)出示例题:圆形花坛的直径是20米,它的周长是多少米?
(2)学生读题并尝试列式计算。
(3)学生板演:3.14×20=62.8(米)
说明:、解题时可以不写计算公式
、π取两位小数3.14,计算中不必使用 ≈ ,直接用 = 号。
三、巩固练习(8分钟)
1、 完成课本64页做一做。
2、完成练习十五第1题。
3、补充作业。判断题:
(1)圆的周长刚好是直径的3.14倍。
(2)大圆的圆周率大,小圆的圆周率就小。
(3)、π是两位小数。
(4)、圆的周长等于它的半径的2π倍。
(5)、求周长,直径是唯一条件。
四、课堂小结(2分钟)
本节课我们认识了圆的周长,并且通过实验知道,圆有大小,但每一个圆周长与它的直径的比的比
值都相等,并且是一个固定的数,这个数叫圆周率,用π表示。从而找到了计算圆周长的公式,周长=直径 × π或半径×2×π。
五、布置作业:课堂作业
六、板书设计圆周长计算
圆周长=π(圆周率) 周长是直径的3倍多一点 (即 周长是直径的π倍 ) 它的直径, 圆周长= π×直径
因为d=2r 圆周长=π×半径 ×2
π是一个无限不循环小数,π=3.1415926535 C=πd C=2πr
注:(1)在实际计算中,π取近似值保留两位小数约等于3.14 。
(2)π在计算的应用中,结果不用“≈”号,而用“=”号。
3.14×20=62.8(米)
答:圆形花坛的周长是68.2米
七、课后记
《圆的周长》是在学生学习了正方形周长的基础上进行教学的。由复习老知识引入课题,目的是激发学生的探究积极性,然后我让学生自己推导出圆的周长公式,让学生以小组为单位进行操作:用“化曲为直”的绕线法测量圆的周长,并做好相应记录,填好表,为下一步探究奠定基础,接下来让学生猜一猜、想一想圆的周长与直径有什么关系,进而找到圆的周长与直径的关系,推出圆周率,得出圆的周长公式。最后让学生把得出的圆的`周长公式应用到练习中。
本节课中,我觉得比较成功的是:
首先,在创设情境时,我用旧知引新知导入新课,以学生的兴趣为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我想学生提出质疑测量、学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,再回到课前情境中,使学生在掌握新知识的基础上,解决实际问题,培养学生的应用意识。 在本节的教学中,我发现情境导入吸引了学生的注意,并对新知识产生了浓厚的兴趣,由于前面“正方形周长及圆的认识”知识的成功铺垫,因此本节课学生通过动手操作、自主探究、合作交流‘展示等活动,理解了“化曲为直”的数学思想方法。在推导公式过程中,因为亲自经历了小组内探讨圆的周长与直径的关系的过程,所以学生能较为容易地推导出圆的周长计算公式。
本节课中也存在一些不足之处:比如:在对学生的表达进行评价是艺术性略显不足,应多鼓励,使学生获得成功的体验;另外,我对课堂的掌控和把握能力还需提高,虽然对教材进行了较为深入的分析,但还没有做到不彻底,小组合作要求不到位。
在今后的教学工作中,我将弥补以上不足之处,提高个人的理论修养,使自己的教学趋于完美。
圆的周长教案 篇6
教学目的:
1.让学生知道什么是圆的周长.
2.理解圆周率的意义.
3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.
教学重点:
推导圆的周长计算公式.
教学难点:
理解圆周率的意义.
教具学具:
1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.
2.电脑软件及演示教具.
教学过程:
一、复习:
上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?
二、导入:
这节课我们继续研究圆的周长(板书课题).
1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?
2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?
问:什么是圆的周长?
板书:围成圆的曲线的长是圆的周长.
3.你能测量出这个圆的周长吗?(能)
4.指实物(用铁丝围成的圆)问:你能测量出这个圆的'周长吗?
5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?
回答:不能.
想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.
三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?
四、学生动手测量、教师巡视指导.
五、统计测量结果.
观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?
六、电脑演示
(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.
七、看书后回答问题:
1.是谁把圆周率的值精确计算到6位小数?
2.什么叫圆周率?
3.知道了圆周率,还需知道什么条件就可以计算圆的周长?
4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?
现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)
八、出示例1:
一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?
(得数保留两位小数)
请同学们想一想:车轮滚动一周的距离实际指的是什么?
解:d=1.95 单位:米
c=πd
=3.14×1.95
=6.123
≈6.12(米)
答:车轮滚动一周约前进6.12米.
九、课堂练习:
1.投影:计算下面图形的周长.
2.判断下面各题(正确的出示“√”,错误的出示“×”)
(1)圆周率就是圆的周长除以它的直径所得的商. ( )
(2)圆的直径越大,圆周率越大. ( )
(3)圆的半径是3厘米,周长是9.42厘米. ( )
3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)
如果速度相同,两人同时出发,谁先回到出发地点?为什么?
小明的路线长:20×3.14+20×3.14
=62.8+62.8
=125.6(米)
爷爷的路线长:3.14×(20+20)
=3.14×40
=125.6(米)
两条路线一样长,两人应同时回到出发点.
4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.
结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.
小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识.
圆的周长教案 篇7
教学内容:
教学目标:
1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。
2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。
3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。
教学重点:理解圆周率,能计算圆的`周长。
教学难点:探索并理解圆的周长与直径的商为定值。
教学准备:大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。
教学策略:自主探索、讨论交流、点拨与练习
教学程序:
一、激活目标
出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?
二、活动建构
1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)
2、介绍圆周率的由来。
任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。
组织学生阅读资料,谈感受。
3、推导出:c=πd或c=2πr
4、计算花坛的周长,解决相关问题。
圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?
三、解释应用
一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?
四、反馈测评
1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?
15厘米
A
B
2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?
3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?
五、课堂小结
我的最大收获是什么?我有什么遗憾?我有什么疑问?
希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。
【圆的周长教案】相关文章:
圆的周长教案04-12
圆的周长教案05-27
《圆的周长》教案06-22
《圆的周长》教案02-26
关于圆的周长教案01-15
圆的周长优秀教案06-19
圆的周长教案15篇01-01
圆的周长教案(15篇)01-01
圆的周长说课稿09-19
《圆的周长》说课稿06-10