当前位置:好文网>实用文>教案>五年级数学下册教案

五年级数学下册教案

时间:2024-09-10 14:05:42 教案 我要投稿
  • 相关推荐

五年级数学下册教案合集15篇

  作为一名教学工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。写教案需要注意哪些格式呢?下面是小编为大家整理的五年级数学下册教案,仅供参考,大家一起来看看吧。

五年级数学下册教案合集15篇

五年级数学下册教案1

  【教学内容】

  2、5的倍数的特征(教材第9页例1,教材第11页练习三第1~2题)。

  【教学目标】

  1.经历自主探索2和5的倍数的特征的过程。

  2.知道2、5的倍数的特征,会判断一个自然数是不是2和5的倍数。

  3.培养学生的观察、猜想、分析、归纳的能力,愿意与同学交流自己发现的结果,增强学习数学的兴趣。

  【重点难点】

  通过探索发现2、5的倍数的特征,判断一个数是不是2和5的倍数。

  【复习导入】

  师:同学们,我们一起玩个猜数游戏,好吗?你们任意说出一个自然数,不管是几位数,我都能很快的判断出它是否是2或5的倍数。不信可以试试看。

  学生报数,老师答,同时请大家验证。

  师:同学们的眼神里闪现出惊讶的目光。你们想知道老师为什么不计算就能马上判断出来吗?学了今天的知识,你们就知道老师猜数的奥秘了。

  板书课题:2和5的倍数的特征。

  【新课讲授】

  1.探索5的倍数特征

  (1)引入百数表。

  (2)出示课件:百数表,在这些数中找出5的倍数,写出来。

  (3)你们找的数和老师找的相同吗?(课件出示百数表)

  (4)观察5的倍数,你有什么发现?把你的发现说给同桌听听。

  (5)归纳:谁来概括一下5的倍数到底有什么特征?板书:个位上是0或5的数都是5的倍数

  (6)验证:除了这些数以外,其它5的倍数也有这样的特征吗?请举例验证。请你写一个多位数,并且是5的倍数。

  (7)过渡:学习了5的倍数的特征有什么好处?师随机在黑板上写一个数,让学生猜猜它是不是5的倍数。

  (8)练一练:下面哪些数是5的倍数?

  240,345,431,490,545,543,709,725,815,922,986,990。

  过渡:那172是几的倍数呢?请同学验证。2的倍数有什么特征,想不想研究?下面我们一起研究2的特征。

  2.探索2的倍数特征

  (1)猜一猜:根据研究5的倍数特征的经验,你猜一猜2的倍数可能会有什么特征呢?

  (2)课件出示:百数表找出2的倍数。(小组合作找出所有2的倍数)

  (3)汇报后,观察2的倍数的特征,看看你刚才的猜测是不是正确。

  (4)归纳:2的倍数有怎样的特征?

  板书:个位上是0、2、4、6、8的数都是2的倍数。

  (5)验证:除了这些数以外,其它2的`倍数也有这样的特征吗?请举例验证。

  (6)填一填:下面哪些数是2的倍数?1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。

  让学生独立完成后汇报。

  3.奇数、偶数的再认识

  自然数按是不是2的倍数来分可分为奇数和偶数两大类,2的倍数都是偶数,不是2的倍数就是奇数。

  4.那么既是2的倍数又是5的倍数有什么特征呢?

  (1)在5的倍数中找出2的倍数;

  (2)在2的倍数中找到5的倍数。

  比较:判断一个数是不是2或5的倍数,都是看什么?

  结论:个位上是0的数,既是2的倍数又是5的倍数。

  【课堂作业】

  1.完成教材第9页“做一做” 。

  2. 完成教材第11页练习三第1~2题。

  【课堂小结】

  1.现在,你们知道老师猜数的奥秘了吗?现在老师说数,请同学们判断出它是不是5或2的倍数。

  2.通过今天的学习,你有什么收获?还有什么问题?

  【课后作业】

  完成练习册中本课时练习。

  板书: 2、5的倍数的特征

  个位上是0或5的数都是5的倍数;

  个位上是0、2、4、6、8的数都是2的倍数;

  个位上是0的数,既是2的倍数又是5的倍数。

  教学反思

  通过这节课的教学,使我认识到数学课堂教学活动是一个活泼的、主动的、丰富多彩的活动空间。教学中,我从学生已有的生活经验出发,结合学生的认识规律,给学生提供有趣的情景,激发学生的探求欲望,创设观察、操作、合作交流的机会;让学生通过动脑、动手、动口,做他们想做的,在做的过程中观察知识,在合作交流中去思考、质疑。充分发挥学生的主体作用,让学生在活动中学习数学,使学生真正感受到学习数学的乐趣。密切联系学生的生活实际,使学生真正领略到数学就在我们身边,生活中处处有数学。

五年级数学下册教案2

  教材内容分析

  《找次品》是人教版数学五年级下册第七单元“数学广角”的内容。在现实生活中“次品”的情况各不相同,有的是外观与合格品不同,有的是所用质量不合格等。这节课的学习中要找的次品就是外观完全相同,但是质量有所差异,并且知道次品比合格品轻(或重),在所有待测物品中只有唯一的一个次品。

  教学目标

  1.知识和技能:通过观察、猜测、操作、画图、推理与合作交流验证等学习方法,探究找次品的策略,能够借助抽象记法对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样化到优化的思维过程。

  2.过程与方法:经历用天平测次品的过程,体验实验探究、发现运用的学习方法。

  3.情感态度与价值观:在学习活动中,体会数学的优化思想,感受数学知识的魅力,激发学习探究的欲望,培养学生的逻辑思维能力。

  学情分析

  五年级学生的思维水平总体上还处在具体运算操作的发展阶段,形象思维是他们的优势。由于在前段的学习中,学生已积累了探索数字规律的基本方法与策略,使学生学会灵活地、有序地思考,及时引导学生归纳出解决这类问题的最优策略,经历由

  多样到优化的思维过程。

  教学策略选择与设计

  “找次品”的教学,旨在通过“找次品”渗透优化思想,引导学生充分感受到数学与日常生活的密切联系。通过本节课的教学培养学生用数学的能力。提高学生数学思维能力和解决问题的能力。本节课以“找次品”的一系列操作活动为载体,让学生通过动手操作、观察等方式感受生活中解决问题方法的多样性,在此基础上,通过归纳、推理的方法体会运用最优化策略解决问题的有效性,感受数学的魅力。

  教具学具:

  12个小方块课件

  教学过程

  课前交流

  视频(美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是一个不合格的零件(橡皮圈)引起的。同学们有什么要说的吗?(不合格产品又叫次品,次品虽小,可危害巨大。而在我们的生活中常常有一些看似完全相同的物品中混着一些质量不同轻一点或重一点的次品伤害着我们。如果我们提前发现他们就能避免一些伤害。)

  说到次品老师想起了一位世界名人?你们想认识吗?

  生:(想)

  出示比尔盖茨的图像,让学生说说对他的了解。

  师赞美(同学们知识真丰富一定是一群喜欢读书喜欢学习的好孩子。老师给你们点个赞。)

  看到比尔盖茨那充满自信的笑充满智慧的笑我希望我们同学和比尔盖茨一样时刻充满自信的笑智慧的笑,同学们能做到吗?同学们准备好了吗?上课

  一.创设情景生成问题

  1.出示情景生成问题

  这节课我们一起学习如何去寻找外观相同,只有轻重不同的次品。

  比尔盖茨公司在招聘员工的时候出过一道找次品的题目,想看吗?

  生:想

  出示课件:这儿有81瓶口香糖,其中有一瓶比其他的稍轻。如果只能用没有砝码的天平来测量,至少要称多少次才能保证把它找出来呢?

  读完题目你知道了什么?有什么不明白的地方?

  生(没砝码的天平怎么用)引导学生自己解决。

  师小结用没有砝码的天平去称的时候次品可能在左边,也可能在右边,还可能在旁边,刚才同学们提的问题没砝码天平怎么使用现在明白了吗?生(明白)谁还有问题吗?

  师:保证这两个字是什么意思?

  生:自由回答,

  师小结保证找到就是一定找到,那怕最坏的情况下也要找出来,不考虑运气好的情况,要考虑运气最坏的情况。

  师:现在题目的意思理解了吗?

  谁来大胆的猜测猜测。学生自由回答。这只是我们的猜测,那怎样验证我们的猜测呢?是不是感觉有点难啊?

  当我们遇到困难时该怎么办呢?(课件展示)老子的`话

  老子告诉我们从容易的开始,从容易的研究解决过程之中找到规律发现方法然后再去研究解决难的问题。那你们认为从几瓶找一瓶次品最好找呢?

  生;有的说2瓶有的说3瓶那就从2瓶开始可以吗?

  2.探索规律

  (1)从2瓶中找1瓶次品

  如果从两瓶中找出一瓶次品请问怎么用没有砝码的天平去把它称出来呢?

  生:两端各放一瓶上翘的那瓶就是次品。再找一名学生汇报(回答的真好,掌声鼓励)

  【设计意图(从2瓶中找一瓶次品巩固学生对没砝码天平的运用。】

  (2)从3瓶中找1瓶次品

  二瓶好了接下来我们研究三瓶行吗?(课件展示)生思考,那谁上来给大家演示一下掌声有请(学生边说边演示)看谁听的

  认真,观察的仔细,谁再来说说?看一看电脑是不是这样做的,在数学上老师把它记录下来可以这样记录:(板书)

  刚才交流的时候大家用了一个词特别好

  如果

  那么

  如果天平平衡那么剩下的那瓶是次品。天平不平衡那么上翘的那瓶是次品。

  【设计意图:从3瓶中找一瓶次品巩固学生对没砝码天平的运用,初步感受找次品前先把待测物品分一分。】

  称一次就知道次品在哪份中,还知道那两份中没次品。接下来研究从5瓶中找一瓶次品,独立思考,同桌交流,全班汇报。

  比较从3瓶、5瓶中找次品让说发现?师生共同总结。带着我们的发现接下来我们增加点难度,同学们你们敢去挑战吗?从你们回答的声音中老师听到了你们的信心。

  (3)从8、9、11、12瓶中找1瓶次品那我们以小组为单位来研究.(课件)找学生读提示。我希望我们同学在小组内能够发挥团队的力量,开始(学生操作交流)。

  老师巡视时非常感动,同学们很会合作学习,分工明确,认真研究,发挥了团队的力量,找到了找次品的不同方法,我们找一组上来分享他们的成果。这个小组研究的是从九瓶糖中找一瓶次品,让学生说一说每种方法是怎么分的?怎么称的?用了几次?仔细观察这组数据你认为哪种方法最好保证找到次品所用

  的次数最少?为什么?

  (4)总结规律小组交流汇报结论分成三份,并且平均分保证找到次品所称的次数最少用十二验证。通过验证我们知道分成三份的,并且平均分保证找到次品所称的次数最少。那不能平均分的又有什么规律可寻那?让研究八瓶的小组上前面和大家一起分享,仔细观察这组数据你认为哪种方法最好保证找到次品所用的次数最少?我们就来研究研究这种方法。这种方法怎么分的?怎么称的?

  学生汇报的基础上,得出不能平均分的也分成三份,并且尽量平均分保证找到次品所称的次数最少呢?用十一去验证。通过验证我们知道不能平均分的也分成三份,并且尽量平均分保证找到次品所称的次数最少。通过我们同学的共同努力我们在找次品的行程中完成了一次飞跃找到了找次品的最优方法。

  【设计意图:让学生自主探索找次品的方法,共同优化出最优方法,感受优化过程,并且明白为什么这种方法最优化。】

  三、巩固应用内化提高

  现在我们找到了找次品的技巧,那么我们应用我们刚才学到的知识去比尔盖茨的公司应聘好吗?八十一能平均分成三份吗?我们应该怎么办?自己完成。呼应猜测。

  【设计意图:应用回归】

  四、回顾整理内化提升

  让学生说收获,生自由说。老师总结:

  【设计意图:让学生明白数学学习方法,数学思想,探究思路是一生的财富。】

五年级数学下册教案3

  第一单元方程

  第一课时 方程的意义

  教学内容:教科书第1~2页的内容及练习一的1~3题。

  教学目标:1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、培养学生概括、归纳的能力。

  教学过程:

  一、教学例1

  出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗?

  学生在本子上写。

  指名回答,板书:50+50=100

  含有等号的式子叫等式,它表示等号两边的结果是相等的。

  二、教学例2

  学生自学

  要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。

  2、小组同学交流四道算式,最后达成统一认识:

  X+50>100 X+50=100

  X+50<100 X+X=100

  根据学生的回答,教师板书这4道算式。

  3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

  学生可能会这样分:

  第一种:

  X+50>100 X+50=100

  X+50<100 X+X=100

  第二种:

  X+50>100 X+X=100

  X+50<100

  X+50=100

  引导学生理解第一种分法:

  你为什么这样分,说说你的想法。

  小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

  指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。

  提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

  那X+50>100 、X+50<100为什么不是方程呢?

  提问:那等式和方程有什么关系呢,在小组里交流。

  方程一定是等式,但等式不一定是方程。

  三、完成“试一试”、“练一练”

  学生独立完成。

  集体订正时围绕“含有未知数的等式”进一步理解方程的含义

  四、课堂作业:练习一的1、2、3。

  板书:

  X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式是方程。

  第二课时 等式的性质(一)

  教学内容:教科书第3~4页的内容,练习一的4~6题。

  教学目标:1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  2、根据等式的性质(一)学会解决含有加、减号的方程。

  3、有意识地培养学生的自学能力。

  教学过程:

  一、教学例3

  出示图,学生根据图独立填空。

  根据学生的回答,板书:

  20=20 20+10=20+10

  X=50 X+20=50+20

  50+a=50+a 50+a-a=50+a-a

  X+20=70 X+20-20=70-20

  提问:比较两边的算式,你有什么发现,在小组里说说。

  全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然是等式。这是等式的性质。

  独立完成“练一练”第1题

  二、教学例4

  学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。

  全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,学生解决不了的教师解决。

  一是方法:根据等式的性质把含有未知数的.这边化简成就含有一个未知数。

  二是检验:把计算的结果代到原式,看左右两边是否相等。

  三强调书写的格式。

  小结:求方程中未知数值的过程,叫做解方程。

  完成“试一试”“练一练”的第2题。

  学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分析错误原因,帮助他们弄懂。

  三、课堂作业

  练习一的第4、5、6题。

  第4、6题做在书上,第5题写在作业本上。

  板书:

  等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  这时等式的性质。

  X+10=50

  解: X+10-10=50-10

  X=40

  第三课时 练习

  教学内容:教科书第6页的7~12题。

  教学要求:1、通过练习,使学生进一步体会方程的含义。

  2、进一步理解等式的性质,能根据等式的性质正确地解方程。

  教学过程:

  一、基础练习

  1、说出下面的式子哪些是方程,哪些不是,为什么?

  20+17=37 12-Y=4 a+12=35

  21-b<14 x=14+23 16+a=27+b

  2、解方程

  X+125=370 520+X=710 X-4.9=6.4

  120-X=25 7.8+X=2.5 X+8.5=12

  学生独立完成,指名学生板演。

  选3题让学生说说想的过程。

  集体订正,帮有错的同学分析错误原因,使其明白。

  二、完成第6页的7~12题。

  第7题

  学生独立完成后指名回答,让学生说说是怎样想的。

  使学生明白:根据等式的性质是含有未知数的一边只剩下未知数,就能很快知道最后的结果。

  第9题

  先由学生独立完成。

  指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我们在做题时要注意一些什么?

  第8题

  学生独立完成,指名板演。

  教师要特别关注前面解题还有错的学生,争取人人过关。

  集体订正,分析错误原因。

  第12题

  学生读题后独立思考解决问题的方法。

  小组内交流。

  全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。

  三、课堂作业

  第6页的第10、11题。

  第四课时

  教学内容:教材第7~10页,例5、例6及相应的试一试,练一练,练习二第1~3题

  教学目标:

  1、使学生进一步理解并掌握等式的性质,即在等式两边都乘或除以同一个数(除以一个数时0除外),所得结果仍然是等式的性质。

  2、使学生掌握利用相应的性质解一步计算的方程。

  教学重点:使学生理解并掌握在等式两边都乘或除以同一个数(除以一个数时0除外)这一等式的性质。

  教学过程:

  一、复习等式的性质

  1、前一节课我们学习了等式的性质,谁还记得?

  2、在一个等式两边同时加上或减去同一个数,所得结果仍然是等式。那同学们猜想一下,如果在一个等式两边同时乘或除以同一个数(除以一个数时0除外),所得结果还会是等式吗?

  3、生自由猜想,指名说说自己的理由。

  4、那么,下面我们就通过学习来验证一下我们的猜想。

  二、教学例五

  1、引导学生仔细观察例五图,并看图填空。

  2、集体核对

  3、通过这些图和算式,你有什么发现?

  4、接下来,请大家要课练本上任意写一个等式。请你将这个等式两边同时乘同一个数,计算并观察一下,还是等式吗?再将这个等式两边同时除以同一个数,还是等式吗?能同时除以0吗?

  5、通过刚才的活动,你又有什么发现?

  6、引导学生初步总结等式的性质(关于乘除的)

  7、板书出示:等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

  8、练一练第一题

  ⑴、指名读题

  ⑵、生独立填写在书上,集体核对

  ⑶、你是根据什么来填写的?

  三、教学例六

  1、出示例六教学挂图,指名读题,同时要求学生仔细观察例六图

  2、长方形的面积怎样计算?

  3、根据题意怎样列出方程?指名口答,你是怎么想的?板书:40X=960

  4、在计算时,方程两边都要除以几?为什么?

  5、生独立计算,指名上黑板。全班核对

  6、计算出X=24后,我们怎样才能确定这个数是否正确?请大家口算检验一下。最后将例六填写完整。

  7、小结:在刚才计算例六的过程中,我们将方程的两边都同时除以40,这是为什么?为什么将等式两边都同时除以40,等式仍成立?

  8、试一试

  ⑴、出示X÷0.2=0.8

  ⑵、生独立解方程,指名上黑板。师巡视并帮助有困难的学生。

  ⑶、集体核对,指名口答:你是怎样解方程的?为什么可以这样做?

  9、练一练第二题

  ⑴、生独立解方程。指名上黑板,师巡视。

  ⑵、集体订正。

  四、巩固练习

  1、练习二第一题

  ⑴、请每位同学在小组里说一说每一题应该怎样解,指名口答。(第三组)

  ⑵、生独立解方程。指名上黑板

  ⑶、集体核对

  2、练习二第二题

  ⑴、指名读题

  ⑵、生独立填写,师巡视。

  ⑶、你在填的时候是怎样想的?

  五、课堂作业

  练习二第三题

五年级数学下册教案4

  学习目标:

  1.使学生初步理解并掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的规律之间的联系。

  2.会运用分数基本性质把不同分母的分数化成分母相同而大小不变的分数。

  3.培养学生的迁移类推能力、抽象概括能力和观察能力。让学生体会到数学知识间的内在联系,感受学习数学知识的价值。

  学习重点:归纳分数的基本性质,并运用性质转化分数。

  学习难点:归纳分数的基本性质,并运用性质转化分数。

  学习准备:教学课件。

  学习过程:

  环节预设 教师活动 学生活动 设计意图

  一、复习导入 1.直接口答下面各题的商,说说是怎样想的?根据什么知识?

  120÷20=

  (12O×3)÷(30×3)=

  (120÷10)÷(30÷10)=

  2、分数与除法有什么联系? 学生思考并回答问题 通过复习导入,引导学生观察思考,从而提出本节课课题。

  二、合作探究 1.教学教材第57页的例1。

  让学生拿3张同样的长方形纸片,平均分成2份、4份、8份,并分别表示其中的1份、2份、4份,涂上颜色,分别用分数表示涂色部分

  问:把3张纸条的左端对齐,平放在桌上。观察比较,你发现了什么?

  通过动手操作、观察比较,我们知道、、这三个分数的大小相等。这三个分数的分子、分母都不相同,但是它们的大小却完全相同,它们的分子、分母各是按照什么规律变化的呢?学生以小组为单位讨论,请代表发言。

  随着学生汇报,老师板书。

  教材59页第8题。

  观察以上例子,你得出什么结论?(学生讨论,汇报。)

  提问:这里“相同的数”是不是任何数都可以呢?为什么0要除外?(学生讨论)师:分子和分母如果都乘上0,则分数成为,而分数的`分母不能为O;又因为0不能作除数,所以分数的分子和分母也不能同时除以O。

  提问:你能不能根据分数与除法的关系和商不变的性质来说明分数的基本性质?

  2.教学例2

  出示例2。问:谁能说一说,在审题过程中要注意什么。(分析要点:①分母是12;②大小不变。)

  问:想一想,怎样不改变分数大小,使分母变为12?应根据什么知识解决这个题的?

  学生试着在课本上填写,集体订正。

  问:在解答中应注意什么问题?

  3.完成教材第59页第8题。学生独立完成,再集体订正。

  请学生根据分数的基本性质思考并说明思路。 学生讨论交流并回答问题。 梳理整合学生零散的发现,让学生的认知逐步深入清晰、完整。

  三、巩固应用 1.完成教材第58页练习十四第1题。

  学生先独立涂色,然后比较大小并说明理由。

  2.完成教材第58页练习十四第3题。

  学生两人一组,由一人说一个分数,另一个人说出一个相等的分数。

  3.完成教材第58页练习十四第5题。

  引导学生先应用分数的基本性质,判断哪几个分数是相等的,然后在直线上把这个点画出来。 老师启发学生观察,推算出每个分数中分子与分母可以同时除以几,得到一个与原分数相等的分数。

  4.完成教材第58页练习十四第6题。 学生进行思考、解答。 通过习题的演练,让学生将知识点进一步应用到实际解决问题当中。

  四、课堂小结 通过今天的学习,你都有哪些收获呢?说一说学会了什么,自己表现怎么样。 学生思考并回答 让学生体验成功的喜悦,进一步拓展学生的思维和创造能力。

五年级数学下册教案5

  教学内容:观察物体

  教学目标:

  1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

  2.培养学生从不同角度观察,分析事物的能力。

  3.培养学生构建简单的空间想象力。

  重点:帮助学生构建初步的空间想象力。

  难点:帮助学生构建初步的`空间想象力。

  教学过程:

  一、谜语导入

  请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

  二、合作探究

  (一)整体观察

  1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

  你观察到的正方体是什么样的?

  在你的位置上观察,你看到了哪几个面?

  2.学生汇报交流。

  学生自由走动,观察。汇报交流。

  3.解释应用

  教师出示两个正方体的立体图,一个有虚线,另一个没有。

  提问:谁能用刚学到的知识解释一下正方体为什么这样画?

  学生解释说明。

  (二)分别从三个面进行观察(出示例1)

  1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

  学生离开座位自由观察。

  2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

  总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

  三、拓展应用

  1.做教科书例2

  2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

  学生玩游戏,教师指导。

  四、总结

  本节课你学会了什么?

  五、作业布置

  兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。

  1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

  2.从一个面看到物体的形状,可以有多种不同的摆放方式。

  3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

五年级数学下册教案6

  一、教学内容

  课本P38~40。

  二、教学目标

  1.知识与技能

  使学生理解体积的意义;认识常用的体积单位:立方米、立方分米、立方厘米。

  2.过程与方法

  让学生经历探索体积和体积单位的过程,发展学生的空间观察能力和培养学生的推理能力。

  3.情感、态度与价值观

  使学生形成空间观念,体验所学知识与现实生活的联系,使其能运用所学知识解决生活中简单的问题,从中获得价值体验。

  三、重点难点

  1.教学重点

  体积概念的建立以及对体积计量方法的理解。

  2.教学难点

  感知物体的体积以及建立体积单位的概念。

  四、教学用具

  1立方米、1立方分米、1立方厘米的模型;水杯,水,沙子,大小石块(用线系好),木块等;10个1立方厘米的正方体。

  五、教学设计

  (一)铺垫选择研究方向

  1.引入:在装有半杯蓝色水的玻璃杯中(先在水面处做个记号)放入一块石块。

  2.观察思考。

  (视频脚本三:长方体和正方体4.土豆放入水杯的动画片。)

  (1)水面的位置发生了什么变化?杯中的水为什么会上升?

  (2)杯中的水为什么会上升,这就是我们今天要研究的内容。

  (二)发现并认识体积

  1.想一想:是不是所有的物体都占有一定的空间?用桌上提供的物品验证。有:木块、沙子、火柴盒、工具箱、石块、玻璃球……

  2.教师巡视与学生一起探讨。

  3.提问汇报。

  (1)你们是怎样进行实验的?

  (2)你们在实验过程中观察到了什么现象?

  (3)学生动手操作。

  (4)学生回答。

  生:我们拿出自带的装满细沙的杯子,先把细沙倒在纸上,把一块木块放入杯中,然后再把细沙倒入杯中,沙子不能全部倒入杯中,有剩余部分,因为木块占有一定空间。

  4.表象再现。

  (1)闭眼回忆刚才验证物体的样子。

  (2)学生闭眼想象。

  5.抽象体积的概念。

  (1)物体所占的空间一样吗?

  (2)学生回答。

  生:我们先把小石块放入杯中,然后在水面上升处作个记号。取出石块,再放入大一些的石块,发现水面比原来的水面高了。

  (3)为什么上升的水面会比原来的高?

  (4)学生回答。

  生:因为大石块占的空间大,所以上升的水面比原来的高。也就是说,物体的大小不一样,所占空间的大小也不一样。

  6.看来物体所占空间有大有小,物体所占空间的大小就是物体的体积。

  (1)什么叫物体的体积?

  (2)学生回答:物体所占空间的大小叫做物体的体积。

  7.看书质疑。

  (三)自我探索体积单位

  1.要知道一个物体的体积有多大,或者一个物体的体积比另一个物体的体积大多少或少多少,该怎么办?这就需要计量,计量体积要用体积单位。【 】

  2.猜想。

  你听说过哪些体积单位?

  (1)常用的体积单位有哪些?

  (2)汇报:将你们学习到的说给大家听听。

  (3)学生回答。

  棱长1厘米的正方体,体积是1立方厘米;

  棱长1分米的正方体,体积是1立方分米;

  棱长1米的正方体,体积是1立方米。

  (视频脚本三:第三单元长方体和正方体5.视频“1立方米的空间有多大”的演示)

  3.估量体积单位。

  (1)1立方厘米的空间有多大?比画比画。

  (2)什么物体的体积大约接近1立方厘米?

  (3)1立方分米有多大?比画比画。

  (4)什么物体的体积接近1立方分米?

  (5)1立方米呢?

  (6)1立方米有多大?利用一些工具体验大小,你们钻进去试一试。(准备3个米尺)

  4.填入适当的单位。

  (1)橡皮的体积大约是5()。

  (2)桌子的体积大约是240()。

  5.质疑。

  (四)体积的初步计量

  1.教师演示(学生跟着摆)。

  (1)出示2个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?

  (2)出示6个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?

  (3)(改变长方体的摆法)这是长方体吗?它的。体积是多少?为什么仍是6立方厘米?

  (4)(再改变形状)形状变了,体积有没有变?为什么?

  (5)为什么不管摆什么形状,体积都是6立方厘米?

  2.学具操作。

  (1)你们每人桌上都放有10个1立方厘米的正方体,现在请你们摆一个体积是9立方厘米的长方体,想想怎么摆?

  (2)为什么所摆的长方体的体积都是9立方厘米?

  3.归纳概括。

  (四人一组讨论)根据刚才所摆的图形,你怎么知道这些物体的体积是多少的`?

  (五)巩固练习

  1.填空

  常用的体积单位有()、()、()。

  常用的面积单位有()、()、()。

  常用的长度单位有()、()、()。

  棱长()的正方体的体积是1立方厘米。

  棱长()的正方体的体积是1立方分米。

  棱长()的正方体的体积是1立方米。

  2.在括号里填上适当的单位。

  (1)一根粉笔的体积大约是10()。

  (2)讲台桌的体积大约是0.4()。

  (3)一本《新华字典》的体积大约是0.35()。

  (4)一张信纸的面积大约是5()。

  (5)一块城砖的体积大约是3()。

  3.拼一拼,说说是由几个1立方厘米的正方体组成的?

  (六)全课总结

  通过这节课你有哪些心得和体会?你还有哪些问题?

  (七)板书设计

  体积和体积单位

  意义:物体所占空间的大小叫做物体的体积。

  单位:立方厘米、立方分米、立方米。

  计量:要看这个物体含有多少个体积单位。

五年级数学下册教案7

  【设计理念】

  数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度。

  【教学内容】

  人教版五年级下册第23~24页“质数与合数”。

  【学情与教材分析】

  本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。

  【教学目标】

  1.让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。

  2.把握整数按因数个数的分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。

  3.通过研究质数与合数特征的学习活动,体会学习数学的思想方法。

  【教学准备】

  课件;练习纸每生一张。

  【教学过程】

  活动一:构建质数和合数概念

  1.引导学生按要求列出乘法算式:“因数用整数、不用1”。

  教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。

  学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。

  2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。

  教师依次在这些质数的.前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。

  【设计意图】

  “活动一”全过程教师基本不言语,只用手势或神情来组织教学,给学生一个神秘感,在创设静谧的氛围中静心体会质数与合数的区别。

  活动二:讨论质数和合数的特征

  1.师:“从这些乘法算式中,你发现了什么?

  学情预设:学生有可能说出质数都是奇数;对策:教师指出2是质数、15是合数;

  合数可以写出乘法算式;如果不用1,质数无法写出乘法算式。

  2.教师擦除“不用1”,学生列出相应的乘法算式,再进一步用因数的个数来探讨质数和合数的概念。

  师:观察因数的个数,你又发现了什么?

  从乘法算式中,学生很快并能清晰地发现质数只有1和它本身两个因数,而合数则除了1和它本身两个因数外,还有别的因数(至少三个因数)。

  3.根据学生回答板书。

  4.讨论:“1”是质数还是合数?

  学情预设:有的学生可能认为:1有两个因数,一个是1,一个是它本身,1应该是质数;有的学生可能认为:1的本身还是1,所以1应该只有一个因数;有的学生可能认为:1既不是质数也不是合数。

  师把板书写完整。

  5.小结:谁能用自己的语言说一说什么样的数叫质数?什么样的数叫合数?怎样判断一个数是质数还是合数?

  【设计意图】

  预留足够的时间让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。并尝试根据因数的个数归纳出质数与合数的概念,学会运用质数和合数的特征进行判断,充分感受到知识之间既有区别,又有联系。

  活动三:应用概念寻找或判断质数

  1.继续寻找30以内的其它质数。

  2.做一做:出示数字卡片:17、22、29、35、37、87、93、96、1,将数字卡片填入质数与合数相应的集合圈里。

  3.下面的说法正确吗?说说你的理由。

  ⑴所有的奇数都是质数。()

  ⑵所有的偶数都是合数。()

  ⑶在1、2、3、4、5……中,除了质数以外都是合数。()

  ⑷两个质数的和是偶数。()

  【设计意图】

  通过不断的寻找、发现与判断质数的练习中,使学生意识可以用合理的方法来判断,巩固质数与合数特征的认识。

  活动四:拓展延伸深化概念

  1.你知道他们各是多少吗?(在小组内交流各自的想法后汇报)

  ⑴两个质数的和是10,积是21,他们各是多少?

  ⑵两个质数的和是20,积是91,他们各是多少?

  ⑶最小的质数是?最小的合数是?

  2.在括号里填上质数:

  8=()+()12=()+()28=()+()

  3.数学小阅读:哥德巴赫猜想。

  同学们你们知道吗,刚才你们正在尝试解决一道世界难题,做了一件很有价值的事,这个世界难题就是:是不是所有大于2的偶数,都可以写成两个质数的和呢?这个问题是德国数学家哥德巴赫最先提出的,所以被称为哥德巴赫猜想。世界各国的数学家都想攻克这一难题,但至今还未解决。我国数学家陈景润在这一领域已经取得了举世瞩目的成果。

  请同学们进行数学小阅读:哥德巴赫猜想。课后,感兴趣的同学们也可以查找相关书籍或上网查阅相关资料。

  【设计意图】

  在适度拓展中,尝试解决“任何大于2的偶数,都可以写成两个质数的和”的哥德巴赫猜想。在数学小阅读中,让学生了解数学发展的历史,感受数学文化的魅力,同时留有空间,让学生课后探究。

  活动五:总结

  这节课你有哪些收获?

五年级数学下册教案8

  学习内容:

  人教版小学数学五年级下册教材第12—13页。

  学习目标:

  1.我能理解因数与倍数的含义。

  2.我会有序地思考,掌握了找一个数的因数的方法。

  3.我知道一个数的因数的个数是有限的。

  学习重点:

  理解因数和倍数的`含义,掌握求一个数的因数的方法。

  学习难点:

  能熟练地找一个数的因数。

  教学过程:

  一、导入新课

  二、检查独学

  1.互动分享收获。

  2.质疑探讨。

  三、合作探究

  1.小组讨论:乘法算式中的因数和这里讲的因数一样吗?

  (1)我的想法:________________________________

  (2)小组代表交流、汇报。

  (3)自读课本第12页下面的一段话。

  2.自学课本第13页例1。思考:

  (1)18的因数有________、________、________、________、________、________,共 有________个。

  (2)18的最小因数是________,最大因数是________。它的因数的个数是________的。

  (3)也可以这样表示: 18的因数

  3.组内交流并讨论:怎样找最快,而且不容易遗漏?

  我的想法:________________________________

  4.小组代表汇报,总结。

  5.试试身手(第13页“做一做”)。

五年级数学下册教案9

  教学目标

  (1)知识目标:

  ①使学生理解分数化成小数的方法,能根据分数与除法的关系把分数化成小数。

  ②使学生认识能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。

  (2)能力目标:在学生对能化成有限小数的最简分数的过程的参与讨论中培养学生观察、归纳、解决问题的能力。 (3)情感目标:在找出能化成有限小数的最简分数的规律过程中培养学生对待知识的科学态度和探索精神。

  教学重难点

  教学重点:分数与小数互化的方法

  教学难点:能化成有限小数的分数的特点。

  教学过程

  一、设置悬念 导入新课

  1、师:在我们的日常生活中,经常会遇到这样的问题:“小红和小明进行登山比赛,从山下到山顶,小红用了0.8小时,小明用了3/4小时,哪位同学登得快?”

  要解决这个问题,你有什么好办法?

  生1:把小数化成分数,再比较。

  生2:把分数化成小数,再比较。

  师:大家的想法都很好,要想比较两个人的速度,需要把这两个数统一成一类数,要么都是小数,要么都是分数,这样才能便于比较,今天这节课我们就来学习分数、小数互化的一般方法。(板书课题)

  二、自主探究 学习新知

  1、自主探究小数化分数的方法:

  (1)出示例1:把一条3米长的绳子,平均分成10段,每段长多少米?

  师:谁来列出算式?

  生:3÷10=0.3米

  3÷10= 3/10米

  师:还是这根绳子,如果平均分成5段,每段长多少米?

  生:3÷5=0.6米

  3÷5=3/5米

  师:观察一下上面两组算式,你发现了什么?

  生:0.3= 3/10

  0.6=3/5

  师:两种不同形式结果是相等的,说明小数和分数是可以相互转化的。同学们想一想,能不能把一个小数直接化成分数呢?

  怎样能较快地把小数化成分数?

  0.3 0.6

  问题:请你自己试着把 0.3 和 0.6 转化成分数。

  学生独立完成。课件演示。

  问题:1.说说你的想法。 2.这样转化的依据是什么? 3.把小数化成分数要注意什么?

  生:能,因为小数表示的就是十分之几,百分之几,千分之几。.。的数,所以可以直接化成分母是10、100、1000.。.的分数,再化简就行了。

  (2)师:试一试,请大家在练习本上,尝试把下面的小数化成分数:

  0.07= 0.24= 0.123=

  (3)学生独立解答,教师巡视。请学生到黑板板演,并讲解自己把小数化成分数的方法,师生小结如下: 把小数化成分数,原来有几位小数,就在1的后面写几个0做分母,原来的小数去掉小数点做分子。

  师:小数化成分数,需要注意什么呢?

  生:需要化简的`分数,要化简成最简分数,还要看清楚原来的小数是几位小数。

  2、自主探究把分数化成小数的一般方法:

  怎样能较快地把分数化成小数?

  把化成小数(不能化成有限小数的保留两位有效小数)。

  师:现在就请大家以小组为单位,讨论交流,用你们喜欢的方法做。

  问题:1.说说你的想法。 2.这样转化的依据是什么? 3.把分数化成小数要注意什么?

  要求:各小组推荐一名代表来作汇报。

  (2)交流反馈:

  请小组派代表板书,并讲解本组比较的过程及方法。其他同学质疑。(课件出示)

  师:你认为哪种方法比较简便?你是怎样把分数化成小数的?

  生:我认为把分数化成小数比较更简便,因为不需要通分了。

  生:分数化成小数的一般方法是:分子÷分母(除不尽时按要求保留几位小数)

  用分子除以分母除不尽时,要根据需要按“四舍五入”法保留几位小数。

  特殊方法:分母是10、100、1000.。.时,直接写成小数;分母是10、100、1000.。.的因数时,可以化成分母是10、100、1000.。.的分数,再写成小数。

  试一试: 把下面的分数化成小数(不能化成有限小数的保留两位小数)。问题:说说你的想法。

  三、巩固应用

  1、师:刚才我们一起研究了分数和小数的互化,让我们再次回到开始时提到的问题,你能解决了吗?下面就用你喜欢的方法比较吧!

  2、李阿姨和王叔叔谁打字快些?

  问题:

  1、 怎样比较它们的大小?

  2、 你想把小数转化成分数还是把分数转化成小数?

  强调学生说一说自己解决问题的过程,教师及时作出评价。

  1、把0.7 、9/10 、0.25 、43/100 、7/25 、13/47 这6个数按从小到大的

  顺序排列起来。

  拓展提高:

  你知道吗?

  下面这些分数中哪些可以化成有限小数?

  四、畅谈收获 知识小结

  谁来说一说你今天这节课都学习了哪些知识?你最大的收获是什么?

  五、布置作业 巩固知识

  作业:第78页练习十九, 第3题、第8题、第10题。

五年级数学下册教案10

  教学目标

  1、知识与技能

  (1)理解掌握质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数;

  (2)能正确判断一个数是质数还是合数。

  (3)能判断两个自然上的和是奇数还是偶数。

  2、过程与方法

  引导学生通过动手操作、观察比较、猜想验证、理解感悟质数、合数的含义;

  3、情感态度与价值观

  培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

  教学重点

  理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

  教学难点

  能运用一定的方法,从不同的角度判断、感悟质数合数。

  教学方法

  启发式教学、自主探索、合作交流、讨论法、讲解法。

  课前准备

  多媒体课件

  课时安排

  1课时

  教学过程

  (一)激趣导入。

  一、创设情境,引入新课(课件第2张)

  1.谈话:师:同学们,这节课我们先来做一个抢答游戏,看你们对以前学过的知识掌握的怎么样。

  2.抢答:请同学们以最快的速度说出下面的数有几个因数。

  师出示数,学生抢答因数的个数。

  3、思考:

  (1)一个数的最小因数是几?最大因数是几?(课件第3张)

  (2)一个数的因数是有限的还是无限的?

  (3)怎样找一个数的因数?

  生1:一个数是最小因数是1,最大因数是它本身。

  生2:一个数因数的个数是有限的。

  生3:找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。

  设计意图

  用抢答游戏的方式引入课题,引起学生的兴趣,通过对旧知识的复习,为下面要学习的质数与合数做准备。

  4、师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。

  (板书课题)

  (二)探究新知

  1、找出1-20各数的因数,看看它们的因数的个数有什么规律。

  (1)学生小组内交流,写出1--20各数的因数,看看它们的因数的个数有什么特点。(课件第4张演示)

  1的因数有:1 11的因数有:1,11

  2的因数有:1,2 12的因数有:1,2,3,4,6,12

  3的因数有:1,3 13的因数有:1,13

  4的因数有:1,2,4 14的因数有:1,2,7,14

  5的因数有:1,5 15的因数有:1,3,5,15

  6的因数有:1,2,3,6 16的因数有:1,2,4,8,16

  7的因数有:1,7 17的因数有:1,17

  8的因数有:1,2,4,8 18的因数有:1,2,3,6,9,18

  9的因数有:1,3,9 19的因数有:1,19

  10的因数有:1,2,5,10 20的因数有:1,2,4,5,10,20

  (2)师:观察它们因数的个数,你发现了什么?

  小组讨论:根据因数的个数,你觉得可以怎样分类?

  (3)(课件第6张)

  生1:有的数只有两个因数,如5的因数是1和5。1只有一个因数1。

  生2:有的数的因数不止两个……我们来分分类吧!

  2、学习质数与合数(出示课件第7张)

  师:一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。如2、3、5、7都是质数。

  一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。

  1既不是质数,也不是合数。

  3、做质数表。(课件第8张)

  (1)找出100以内的质数,做一个质数表。

  (2)学生讨论:怎样找100以内的质数?说说你的方法。

  (课件第10张)

  生1:可以把每个数都验证一下,看哪些数是质数。

  生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。3的倍数也可以……

  划到几的倍数就可以了?

  生3:划到7的倍数就可以了。

  (3)(课件第11张演示)剩下的数都是质数。

  (4)师出示100以内的质数表(课件第12张)

  4、牛刀小试。(课件第13张)

  (1)将下面的各数分别填入指定的圈内。

  2 27 37 11 58 61 73 83 95

  (2)两个质数,和是10,积是21,这两个质数是多少?

  生:21=3×7,3和7都是质数,而且3+7=10,所以这两个质数就是3和7。

  两个质数,和是7,积是10,这两个质数是多少?

  10=2×5,2和5都是质数,而且2+5=7,所以这两个质数就是2和5。

  5、探索两数之和的奇偶性。(课件第15张)

  师:奇数与偶数的和是奇数还是偶数?奇数与奇数的和是奇数还是偶数?偶数与偶数的和呢?

  (1)师:从题目中你知道了什么?

  生1:题目让我们对奇数、偶数的和做一些探索。

  生2:我把问题表示成这样……

  (2)小组讨论:你怎样判断任意两个整数的和是奇数还是偶数?

  (3)汇报交流:

  生1:我随便找几个奇数、偶数,加起来看一看。(课件第17张)

  奇数:5,7,9,11,…

  偶数:8,12,20,24,…

  5+7=12

  7+9=16

  ……

  奇数+奇数=偶数

  5+8=13

  7+12=19

  ……

  奇数+偶数=奇数

  8+12=20

  12+20=32

  ……

  偶数+偶数=偶数

  (课件第18张)生2:奇数除以2余1

  偶数除以2余0

  奇数加偶数的和除以2还余1,所以,奇数+偶数=奇数。

  奇数加奇数的和除以2余0,所以,奇数+奇数=偶数。

  偶数加偶数的和除以2还余0,所以,偶数+偶数=偶数。

  (4)师:同桌讨论:这个结论正确吗?你还有其他的方法吗?试一试。

  同桌找一些大数,验证一下所得的结论是否正确。

  (5)(课件第20张)汇报交流:

  534+319=853

  所以:偶数+奇数=奇数

  681+249=930

  所以:奇数+奇数=偶数

  564+232=796

  所以:偶数+偶数=偶数

  设计意图

  用归纳的方法得出结论,培养学生的能力。

  6、火眼金睛辨对错。(课件第21张)

  (1)所有的奇数都是质数。(×)

  (2)所有的偶数都是合数。(×)

  (3)在1,2,3,4,5中,除了质数以外都是合数。(×)

  (4)两个质数的`和是偶数。(×)

  (5)两个奇数的和是偶数。(√)

  7、小结:刚才的学习你学会了什么?(课件第22张)

  (1)质数与合数的概念。

  一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

  一个数,除了1和它本身还有别的因数,这样的数叫做合数。

  (2)1既不是质数,也不是合数。

  (3)自然数可以分为质数、合数和1。

  (4)偶数+奇数=奇数

  奇数+奇数=偶数

  偶数+偶数=偶数

  (三)课堂练习

  谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?

  1、写出下面各数的因数。(课件第23张)

  (1)在50以内的自然数中,最大的质数是(47),最小的合数是(4)。

  (2)既是质数又是奇数的最小一位数是(3)。

  (3)如果两个质数的和是24,可以是(5)+( 19),(7)+(17)或(11)+(23)。

  (4)在自然数中,最小的奇数是(1),最小的偶数是(0),最小的质数是(2),最小的合数是(4)。

  2、不计算,判断下面算式的结果是奇数还是偶数。(课件第24张)

  1+2+3+4+…+40

  生:1-40的自然数中,奇数和偶数各有20个,因为奇数+奇数=偶数,20个奇数相加和是偶数,偶数+偶数=偶数,20个偶数相加和是偶数,所以最后结果一定是偶数。

  (四)拓展提高

  算一算:3个不同质数的和是最小合数的平方,这3个质数的积是多少?

  最小的合数是4,4?=16。

  哪3个质数的和是16呢?

  2+3+11=16

  2×3×11=66

  答:这3个质数的积是66。

  (五)课堂总结

  师:通过学习,你有什么收获?

  生交流:

  1、一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

  2、一个数,除了1和它本身还有别的因数,这样的数叫做合数。

  3.1既不是质数也不是合数。

  4、奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数

  (六)板书设计

  质数和合数

  一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

  一个数,除了1和它本身还有别的因数,这样的数叫做合数。

  1既不是质数也不是合数。

  教学反思

  在教学质数和合数这一课时,我运用了自主、合作、探究的教学方法,使学生在参与中产生求知欲望,调动学习积极性。首先用猜谜语的形式引入课题,在学生复习因数和倍数的知识的基础上,让学生独立写出1-20这20个数的因数,再根据因数多少进行分类,然后以小组为单位交流,学生通过交流,知道可以分为几种情况,从而引出质数、合数的概念。?在教学中教师努力放手,让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程。在合作交流中互相启发、互相激励、共同发展。学生经历和感受了合作、交流、成功、愉悦的情感体验。

  课堂上学生是“主角”,教师只是一个“配角”,最大限度地把时间和空间都留给学生,使每个学生都参仔细观察,认真思考,充分激发学生思维的主动性和积极性。在课堂中,要求学生观察1--20的因数的个数,自己按照一定的标准进行分类,分完后先小组内交流。说说你是按什么来分的?分成了哪几类?由于采用分的标准也必定不同,然后在让学生说标准的过程中,感悟到质数和合数的各自特征,一点点的提炼归纳出质数和合数的意义。培养学生的分类、观察、分析、归纳和交流的数学能力,建立正确的分类思想。整个过程都是学生在动手操作、交流讨论、归纳概括,而教师只是在关键之处适当点拔,引导学生质疑、释疑、归纳、

五年级数学下册教案11

  课题:

  列方程解应用题复习(行程问题)

  学情分析:

  相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

  教学目标(课时目标):

  1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

  2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

  3、逐步掌握画线段图分析题目的方法。

  教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

  教学难点:认识相遇的过程中理解运用等量关系的解决问题。

  教学准备:PPT、练习本

  教学过程:

  教学活动教学说明

  一、复习引入

  1、揭题

  2、常见的相遇问题类型(手势演示)

  (1)同时出发,相向而行

  (2)一车先行,另一车再行,相向而行

  (3)同时出发,途中一车暂停,相向而行

  二、基础练习

  1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

  (1)画线段图分析题意

  (2)找出等量关系

  (3)列式

  2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

  小结:(1)相加=总路程

  (2)相差=路程差

  3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

  小结:(3)到中点相等

  4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

  小结:(4)总路程相等

  三、巩固提升

  5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

  6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

  7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

  8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

  四、思维训练

  9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

  五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

  “相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

  通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

  板书设计:列方程解应用题(行程)

  相遇问题(1)相加=总路程

  (2)相差=路程差

  (3)到中点相等

  (4)总路程相等

  教学反思:

  行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

  1、合理组织安排教材,激发学生主动参与教学

  首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

  追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

  2、运用线段图进行教学,培养学生的分析、观察能力

  学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

  3、为学生提供充分的思考、分析的空间

  在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的'作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

  4、分层递进,满足不同层次需求

  在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

  总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级数学下册教案12

  学习内容

  3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题)

  第1课时课型新授

  学习目标

  1、使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

  2、引导学生学会判断一个数能否被3整除。

  3、培养学生分析、判断、概括的能力。

  教学重点

  理解并掌握3的倍数的特征

  教学难点

  会判断一个数能否被3整除。

  教具运用

  课件

  教学方法

  二次备课

  教学过程

  【复习导入】

  1、学生口述2的倍数的特征,5的倍数的特征。

  2、练习:下面哪些数是2的倍数?哪些数是5的倍数?

  324 153 345 2460 986 756

  教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

  板书课题:3的倍数的特征。

  【新课讲授】

  1、猜一猜:3的倍数有什么特征?

  2、算一算:先找出10个3的倍数。

  3×1=3 3×2=6 3×3=9

  3×4=123×5=15 3×6=18

  3×7=213×8=24 3×9=27

  3×10=30……

  观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

  提问:如果老师把这些3的`倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→21 15→5118→81 24→42 27→72

  教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  (以四人为一小组、分组讨论,然后汇报)

  汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  3、验证:下面各数,哪些数是3的倍数呢?

  21054 216 129 9231 9876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

  4、比一比(一组笔算,另一组用规律计算)。

  判断下面的数是不是3的倍数。

  34025003 1272 2967

  5、“做一做”,指导学生完成教材第10页“做一做”。

  (1)下列数中3的倍数有。

  143545100 332 876 74 88

  ①要求学生说出是怎样判断的。

  ②3的倍数有什么特征?

  (2)提示:

  ①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

  ②接着再考虑什么?(最小三位数是100)

  ③最后考虑又是3的倍数。(120)

  【课堂作业】

  完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

  【课堂小结】

  同学们,通过今天的学习活动,你有什么收获和感想?

  【课后作业】

  完成练习册中本课时练习。

  板书设计第2课时3的倍数的特征

  一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

  【作业设计】

  学习目标,教学方法,数学,教师,能力。

五年级数学下册教案13

  教学内容:

  二期教材四年级第一学期课本P22—23

  教材分析:

  本节内容主要是对常用的面积单位进行一个梳理,一方面进一步借助学生的低阶面积单位的表象累积形成平方千米的表象,另一方面,使学生熟悉平方厘米、平方分米、平方米、平方千米之间的进率关系,能够进行简单的换算。

  教学目标:

  (一)知识与技能

  1、初步学会根据实际需要,选用适当的面积单位,丰富面积单位的量感。

  2、借助问题情景,合作探究平方米与平方千米之间的进率,进一步丰富1平方千米的量感。

  (二)过程与方法

  经历常用的面积单位的梳理过程,自主建构面积单位的换算方法,初步提高整理归纳能力。

  (三)情感与态度

  逐步体会数学与日常生活的密切联系,感知数学的价值。

  重点难点:

  1、丰富1平方千米的量感,掌握常用面积单位间的换算方法。

  2、理解常用面积单位间进率的推算方法。

  教学过程:

  一、引入阶段

  1、感受平方千米

  同学们,你们觉得我们学校大吗?我们泗泾镇大吗?那么松江区呢?这些区域用我们新学的面积单位km2来表示,是多少呢?请看大屏幕:(出示)

  我们美丽的校园占地面积约0.03平方千米。

  我们家园——泗泾镇占地面积约24.2平方千米。

  我们的松江区总面积约604平方千米。

  你得到了什么信息?有什么感受?你觉得平方千米常用在什么样的区域?(对比,交流)

  小结:平方千米常用来表示面积大的区域。

  [从学生所处的生活环境展开,通过“区域大”但表示的“数字小”这一强烈对比,丰富平方千米的量感]

  2、感知常用的'小面积单位

  我们还学过哪些常用的面积单位?谁能从大到小说出来呢?它们之间的进率是多少呢?让我们用手势来比划一下它们的大小吧!1km2能用手势来表示吗?(不能)为什么?(1km2太大)

  板书

  km2 1 m2=100dm2 1 dm2=100cm2 [通过记忆性口答与形象的手势感知,双重复习所学面积单位,再现常用面积单位的表象。]

  3、感知练习

  同学们对面积单位的量感不错,就让我们打开课本P23页,完成第三题,比比看,谁填的有快又准

  在下面()中填入适当的面积单位(课本23页)。

  一张邮票的面积约9()

  一张乒乓球台面约410()

  一间教室的面积约63()

  一张软盘的面积约1()

  一个排球场占地约162()

  上海野生动物园占地约2()

  [在前面面积单位的充分感知铺垫下,通过填写适当的单位,促使学生将熟悉实物的某个面或某块区域与面积单位建立起联系,既诊断学生已学知识的掌握情况,又激活他们已有单位面积的量感。]

  二、探究阶段

  1、情景设疑:通过刚才的单位填写,同学们对面积单位的都很熟悉了,接着让我们来解决前面学习中留下的问题:(出示)如果1 m2可以挤下17人,那么1km2能不能挤得下整个上海的人?(上海总人口为16737700人)

  要想解决这个问题,我们需要知道什么?同桌交流:需要知道1 km2等于多少m2,即km2与m2之间的进率,就可以求出1km2可以挤多少人,最终把问题解决。

  2、合作探究:我们知道1 km2就是边长为1 km的正方形的面积,(出示边长为1 km的正方形图形)。

  那么km2与m2之间的进率是多少呢?你们能从1 km2的定义来找出它们之间的进率吗?请小组合作完成。

  (1)组内尝试解决,师巡视指导。

  (2)全班交流解法:(板书)

  1km × 1km = 1 km2

  1000m× 1000m = 1000000

  m2 1km2=1000000m2

  (3)再次交流:通过在1km2定义的关系式中把km转换成m,我们很容易就找到了它们之间的关系。现在让我们同桌之间再把这个过程互相交流一下。

  3、问题解决:知道了1km2=1000000m2,那么1 km2能不能挤得下整个上海的人呢?谁来说说看?指名交流。这个结果让你有什么想说的吗?

  4、完善面积单位进率:现在我们已经把所学的面积单位之间的进率都找到了,请同学们把P22的面积单位的关系填写完整。(媒体演示课本23页单位面积的累积过程)

  1 km2=()m2 1 m2=()dm2 1 dm2=()cm2

  [通过问题设疑,激发学生的求知欲,让学生主动去探究km2和m2的进率。为了使学生形成清晰的量感,启发学生从定义去推理,把学生的思维引入深处,从而让学生在合作的尝试计算中直观获得1km2=1000000m2。其实学生以前在平方米,平方分米,平方厘米间的进率时已经经历了这样一个推理过程,在这里学生运用以往的经验解决今天所学的新问题,体现了知识的迁移。通过平方米和平方千米间关系的探究,对学生进一步理解单位面积的含义和进率的由来,促进学生表象记忆的形成都有好处,也激发了学生的求知X和解决问题的兴趣,为以下单位换算提供了一个良好的情知背景。]

  三、运用阶段

  1、分层练习:(说出思考过程)

  (1)25 m2=()dm 23 km2=()m2

  (2)3400 dm2=()m2 9000000 m2=()km2 580cm2=()dm2

  (3)70000000 ㎡ —7k㎡=()k㎡

  [学生在三年级时已经积累了一些重量、长度、面积单位换算的经验,并且会用小数表示单位之间的转换。这里先安排两组“从高到低”与“从低到高”的单位转换练习,就想让学生通过尝试找到换算的一般方法:高级单位化成低级单位时乘进率,低级单位聚成高级单位时除以进率。从而在思考方法上予以归纳提升,建构单位换算的基本策略。接着出示带有不同单位的计算题,提高学生的综合运用能力。同时借助学生思考过程的表达,便于检测学生对方法的理解,发展他们的演绎思维。]

  2、拓展练习(同桌讨论)

  判断下列各题是否正确,错的请改正。

  (1)一个铅笔盒表面的宽度约5 c㎡

  (2)教室的面积约30d㎡

  (3)一个粉笔盒的表面约0.75 c㎡

  (4)上海市的总面积约6341000000k ㎡

  [在实际应用中,学生往往对长度单位和面积单位容易混淆,并且在选用面积单位时不善于实际问题的需要。通过判断纠错练习,一方面强化长度单位和面积单位的区别,另一方面想从“数”与“量”两个维度探索修改的方法(修正数据或计量单位),既巩固了单位面积的大小观念,又渗透小数点位置移动引起数的大小变化的思想,拓展了学生的思维。]

  3、生活应用:(小组合作)

  出示:为了扩大我国的绿化面积,人们要在长3km,宽2km的一块长方形的高原上植树,如果每平方米栽1棵树,运来60万棵树苗够吗?

  解决这个问题我们要先算出什么?需要注意什么?写出你们的解题过程。交流探讨并板书解题过程。

  [通过问题解决,再现本节课的重点新知“平方千米与平方米的转化”,同时让学生通过层层问题的分析,理清问题解决的思路,拓展思维,感受数学在生活问题解决中的应用价值。]

  四、总结

  这节课我们一起整理了“从平方厘米到平方千米”(板书)的面积单位,谁来谈谈这节课中你的收获?

五年级数学下册教案14

  一、教学目标:

  1、认识和掌握长方体的特征,理解长、宽、高的概念。

  2、能会计算长方体的棱长总和。

  3、培养学生的观察能力、操作能力及分析综合和抽象概括的能力,发展学生的创新意识。

  4、在学习的过程中,培养学生团结合作的精神。

  二、教学重点:

  掌握长方体的特征,认识长方体的长、宽、高。

  三、教学难点:

  初步建立“立体图形”的概念,形成表象。

  四、教具准备:

  多媒体教学设施及相关课件,长方体实物模型两个(其中一个两面是正方形的长方体)、长方体的框架一个。

  五、学具准备:

  学生每人准备一个长方体形状的纸盒和一把尺子。

  六、教学过程:

  一、导入课题:

  师:今天,老师给同学们带了几位老朋友,同学们看,你们认识它们吗?(屏幕上显示:长方形、正方形、三角形、平行四边形和梯形)你们能说出它们的名称吗?

  生:逐个说出长方形、正方形、三角形、平行四边形、梯形。

  师:这些图形都是我们前面所学过的平面图形,现在你们再看这些图形,和前面那些图形一样吗?(屏幕上显示:正方体、圆柱体、圆锥体、长方体。)

  生:不一样。

  师:(指着图)像这样的图形,就是立体图形,今天,我们一块来研究立体图形中的一种图形(屏幕上显示:一个长方体)长方体。(板书课题:长方体的认识)

  二、探究新知:

  1、面的认识:

  师:根据同学们以前所学习的知识,谁能说说长方体的大概样子呢?

  生:它的大概样子是长长的,方方的。

  师:请同学们在这些图中,找出长方体(出示课件)第几个是长方体?

  生:回答。

  师:在日常生活中,你发现哪些物体是长方体?

  生甲:烟盒,牙膏盒,药盒等。

  生乙:电冰箱,收音机,微波炉等。

  生丙:砖,床,衣柜,教室等。

  师:在我们的生活中,有许许多多的物体是长方体,只要同学们仔细观察,就能发现很多很多。现在请同学们拿出自己准备的学具,跟着老师一块儿摸一摸(教师拿着长方体教具引导学生摸长方体的面)你摸到了什么?

  生:我摸到了长方体的面。

  师:它的面是怎样的?

  生:是平平的。

  师:这样平平的面到底有多少呢?请同学们注意观看屏幕(出示课件)。

  生:6个面。

  师:你们手中的学具也是6个面吗?数一数。

  生:6个面。

  师:对,这是我们对长方体的第一个发现,长方体有6个面。(板书:6个面。)这6个面到底有什么特征呢?请同学们再注意观看屏幕(逐个出示:上下两面重合,左右两面重合,前后两面重合。)

  师:现在,你看到长方体哪两个面怎么样了呢?

  生:上下两个面完全重合在了一起。

  师:说明这两个面怎么样呢?

  生:说明这两个面的形状、大小完全一样。

  师:现在哪两个面又重合在了一起?

  生:左右两个面完全重合到了一起。

  师:说明左右两个面怎么样呢?

  生:说明左右两个面大小完全一样。

  师:接下来哪两个面会重合到一起呢?请同学们猜想一下,想出来了请举手。

  生:前后两个面会重合到一起。

  师:这位同学到底猜想的对不对呢?我们一块来看大屏幕(显示:前后两个面重合。)这位同学猜想的对吗?

  生:对。

  师:通过刚才的观察,你发现长方体6个面都是什么形?

  生:6个面都是长方形。

  师:是不是所有的长方体6个面都是长方形呢?现在请同学们拿出自己的学具仔细观察一下。

  生甲:我的长方体学具6个面都是长方形。

  生乙:我的'长方体学具4个面是长方形,有两个面是正方形。

  师:一般情况下长方体6个面都是长方形,在特殊的情况下有两个面是正方形。

  师:通过刚才的观察及电脑演示,我们就可以得到长方体面的特征。(师板书:6个面都是长方形,特殊情况下有两个相对的面是正方形),相对的两个面大小相同。现在请同学们齐读长方体面的特征。

  生:齐读。

  2、棱的认识:

  师:(拿出教具边指边说)两个面相交的一条边,我们把它叫做长方体的棱。现在请同学们拿出长方体学具,用手摸一摸长方体的棱,你有什么感觉?

  生:有割手的感觉。

  师:看着棱,你发现了什么?

  生:棱把相邻的两个面分开了。

  师:长方体的棱有多少条呢?数一数你的学具。

  生:12条。

  师:(拿出长方体棱长框架,师引导学生有顺序地依次数出长方体棱长。)12条。这是我们的第二个发现,长方体有12条棱。(板书:12条棱)

  师:现在,大家一块来研究长方体的棱有什么特征呢?请同学们拿出你手中的学具,边观察边用直尺测量,思考一个问题:1、长方体12条棱按长短可以分成几组?怎样分?带着这个问题,四个人为一小组,边讨论边分。(师巡视)

  师:讨论好的小组请举手。

  生甲:我们小组把12条棱分成了三组,最长的4条分成了一组,较长的4条分成了一组,最短的4条分成了一组。每组棱长度相等。

  生乙:我们小组分成了两组:最长的4条分成一组,剩下的8条分成一组。

  (师:到底这两组同学分的对不对呢?请同学观看大屏幕,显示1:最长4条分成一组,最短4条分成一组,剩下4条分成一组。有两个面是正方形的分成。显示2:最长的4条分成一组,剩下的8条分成一组。)这两组同学分的对吗?

  生:都对。

  师:12条棱一般情况下分成3组,每组有4条棱长度相等。特殊情况下分成2组,一组有4条棱长度相等,另一组有8条棱长度相等。相等的棱是相对的,也可以说成相对的棱的长度相等。长方体的棱的特征我们就可以总结为(师边说边板书:相对的棱的长度相等。)

  3、顶点的认识:

  师:(拿出教具边说边指)三条棱相交的这一个点,我们把它叫做长方体的顶点。拿出你们的学具,摸摸长方体的顶点,有什么感觉?

  生:有扎手的感觉。

  师:这样的顶点有多少个呢?现在请同学们观看屏幕(显示:长方体的顶点)数一数,长方体有几个顶点?

  生:8个顶点。

  师:是不是所有的长方体都有8个顶点呢?拿出你们的学具数一数。

  生:8个顶点。

  师:对,第三个发现,长方体有8个顶点。(师板书:8个顶点)

  师:(出示课件)相交于一个顶点的三条棱的长度相等吗?(边说边用鼠标指三条棱)

  生:不相等。

  师:相交于一个顶点的这三条棱的长度分别叫做长方体的长、宽、高。(边说边用鼠标指长、宽、高)。

  师:习惯上,长方体的位置固定以后,(出示学具边说边用手指)我们把底面中较长的棱叫做长,较短的棱叫做宽,和底面垂直的棱叫做高。现在,请同学们看着老师的学具,老师用手指,同学们说出它的长、宽、高。(师把教具竖放、横放、侧放、让学生说出长、宽、高)

  师:实际上,长方体的长、宽、高是根据长方体所放的位置的不同而改变的。现在我们来做一些练习题。(电脑出示:练习题1)

  三、课堂巩固

  判断:(正确的在括号里面画“√”,错误的在括号里画“×”。)

  (1)长方体的六个面一定是长方形。( )

  (2)长方体有6个面,12条棱,8个顶点。( )

  八、板书设计:

  长方体的认识

  6个面都是长方形(特特殊情况有两个面是正方形)

  相对的面大小相等

  (12条)棱:相对的棱的长度相等

  (8个)顶点

五年级数学下册教案15

  第一课时

  教学内容:教科书第88~89页,例1、例2、练一练,练习十六第1~2题。

  教学目标:1、使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推向”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学过程:

  一、教学新课

  1、教学例1。

  (1)出示例1。如果把甲杯中的40毫升果汁倒入乙杯,这两杯果汁的数量分别会发生怎样的变化?进行操作演示。回顾操作过程,出示完整示意图。

  (2)解决实际问题。把甲杯中的40毫升果汁倒入乙杯后,两个杯子的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?知道了现在每个杯子中的果汁数量,可以怎样求原来两个杯子中的果汁数量?可以用怎样的方法来解决?小组讨论。

  (3)汇报方法。如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

  (4)。看来“再倒回去”是个好办法,用这个方法我们很容易就能想到原来两个杯子里各有多少毫升果汁。回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程把课本上的表格填写完整吗?边填边说每个数据各是怎样推算出来的。在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么优点?板书课题:解决问题的策略。

  2、教学例2。

  (1)理解题意,提出问题。用什么方法可以将题目的意思更清楚的表达出来?

  (2)解决问题。

  指出:可以按题意摘录条件进行。出示示意图。你能根据示意图说说题目的大意吗?你准备用什么策略来解决?你能仿照示意图的样四,表示出“倒过来推想”的过程吗?尝试画倒推的示意图。展示作业。根据示意图写出倒推后每一步的结果。你能列式解答吗?说说自己的想法。怎样才能知道我们推算出的结果是否正确呢?怎样验算?

  (3)归纳。

  解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的.问题有什么特点?

  3、完成练一练。

  理解题意。尝试将题目中的条件,展示学生作业。你是怎样想的?你打算用什么样的策略角度解决这个问题?“拿出画片的一半还多1张送给小明”是什么意思?你能换种手法表示这样的意思吗?回列式解答吗?说说推想的过程。

  二、巩固练习

  1、完成练习十六第1题。

  你能通过列表的方法题目中的信息吗?你会列式解答吗?说说你是怎么想的?

  2、完成第2题。

  你能画图题目中各个条件的示意图吗?学生根据示意图列式解答。交流汇报,说说是怎样想的?

  三、课堂

  这节课你学会了什么?你有哪些收获和体会?

  第二课时

  教学内容:教科书第90~91页,练习十六第3~8题。

  教学目标:1、通过练习,使学生进一步掌握用“倒过来推想”的策略解决问题的思路,感受所学解决问题策略的实际应用价值。

  2、使学生在解决问题的过程中,进一步发展分析、综合和简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得成功体验。

  教学过程:

  一、引入上节课

  我们学习了什么内容?在解决问题时,可以应

  用什么策略?板书课题:用“逆推法”的策略解决问题。

  二、综合练习

  1、完成练习十六第3题。

  你能把题中的条件进行吗?可以运用什么策略解决呢?你能在图中标出其他几个景点和大门的位置吗?展示作业,说说自己的思路。

  2、完成第4题。学生独立完成。汇报交流方法,你是怎样解决的?应该怎样倒过来想呢?

  3、完成第5题。学生独立完成。汇报交流方法,说说你是怎么想的?怎样检验所填的数据是否正确?

  4、完成第6题。读题,理解题意。下午6时的气温是18℃,根据比中午下降了7℃,你能推算出中午12时的气温吗?你是怎样推算上午8时是多少℃的?

  5、完成第7题。理解每幅图中显示的相等关系:5个桃子的重量=2个梨子的重量3个梨子的重量=1个菠萝的重量1个菠萝重600克小组中交流思路。说说是怎样想的?

  6、完成第8题。你能根据题中的条件进行吗?根据的条件列式解答。应该怎样倒过来推想呢?

  三、课堂

  通过今天的练习,你有什么收获?在生活中,在解决很多实际问题时,都可以运用“倒过来推想”的策略解决。

  第三课时

  教学内容:教科书第92页,练习十六第9、10题、思考题。

  教学目标:1、使学生进一步掌握“倒过来推想”的策略解决实际问题,感受所学解决问题策略的实际应用价值。

  2、使学生在解决问题的过程中,进一步发展分析、综合简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得成功体验。

  教学过程:

  一、揭示课题板书课题:用“逆推法”的策略解决问题。

  二、综合练习

  1、完成练习十六第9题。

  理解对帐单每一栏的含义。4月份的结单余额和上月比,是多了还是少了?你是怎么知道的?怎样可以算出张阿姨信用卡3月份的结单余额是多少元?小组讨论方法。汇报交流想法。

  2、完成练习十六第10题。

  要知道这四张牌原来是怎么放的,可以运用什么样的策略?(逆推法)根据第四幅图,你能知道第三幅图中的牌是什么顺序吗?(10、9、7、8)原来的牌是什么顺序呢?(7、9、10、8)分组活动:拿出四张牌,任意交换两次位置,再翻开看结果,猜猜原来四张牌是怎样放的。小组活动。

  3、完成思考题。

  理解题意及关键词的意思。“遇店加1倍”,遇到店将加成壶中酒的2倍。你能根据题意画出示意图吗?原有?斗→加1倍→喝1斗→加1倍→喝1斗→加1倍→喝1斗(喝完)逆推为:0→1斗→0.5斗→1.5斗→0.75斗→1.75斗→1.75斗→0.875斗

  三、课堂

  你觉得“逆推法”对于解决生活中的实际问题有什么作用?

《五年级数学下册教案合集15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【五年级数学下册教案】相关文章:

数学五年级下册教案02-27

五年级数学下册教案05-15

【经典】五年级数学下册教案05-24

小学数学五年级下册教案01-06

苏教版数学五年级下册教案12-01

五年级数学下册教案03-29

五年级下册数学的教案11-06

数学五年级下册教案方程04-04

五年级下册数学春季教案01-06

五年级下册的数学教案范文01-06

五年级数学下册教案合集15篇

  作为一名教学工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。写教案需要注意哪些格式呢?下面是小编为大家整理的五年级数学下册教案,仅供参考,大家一起来看看吧。

五年级数学下册教案合集15篇

五年级数学下册教案1

  【教学内容】

  2、5的倍数的特征(教材第9页例1,教材第11页练习三第1~2题)。

  【教学目标】

  1.经历自主探索2和5的倍数的特征的过程。

  2.知道2、5的倍数的特征,会判断一个自然数是不是2和5的倍数。

  3.培养学生的观察、猜想、分析、归纳的能力,愿意与同学交流自己发现的结果,增强学习数学的兴趣。

  【重点难点】

  通过探索发现2、5的倍数的特征,判断一个数是不是2和5的倍数。

  【复习导入】

  师:同学们,我们一起玩个猜数游戏,好吗?你们任意说出一个自然数,不管是几位数,我都能很快的判断出它是否是2或5的倍数。不信可以试试看。

  学生报数,老师答,同时请大家验证。

  师:同学们的眼神里闪现出惊讶的目光。你们想知道老师为什么不计算就能马上判断出来吗?学了今天的知识,你们就知道老师猜数的奥秘了。

  板书课题:2和5的倍数的特征。

  【新课讲授】

  1.探索5的倍数特征

  (1)引入百数表。

  (2)出示课件:百数表,在这些数中找出5的倍数,写出来。

  (3)你们找的数和老师找的相同吗?(课件出示百数表)

  (4)观察5的倍数,你有什么发现?把你的发现说给同桌听听。

  (5)归纳:谁来概括一下5的倍数到底有什么特征?板书:个位上是0或5的数都是5的倍数

  (6)验证:除了这些数以外,其它5的倍数也有这样的特征吗?请举例验证。请你写一个多位数,并且是5的倍数。

  (7)过渡:学习了5的倍数的特征有什么好处?师随机在黑板上写一个数,让学生猜猜它是不是5的倍数。

  (8)练一练:下面哪些数是5的倍数?

  240,345,431,490,545,543,709,725,815,922,986,990。

  过渡:那172是几的倍数呢?请同学验证。2的倍数有什么特征,想不想研究?下面我们一起研究2的特征。

  2.探索2的倍数特征

  (1)猜一猜:根据研究5的倍数特征的经验,你猜一猜2的倍数可能会有什么特征呢?

  (2)课件出示:百数表找出2的倍数。(小组合作找出所有2的倍数)

  (3)汇报后,观察2的倍数的特征,看看你刚才的猜测是不是正确。

  (4)归纳:2的倍数有怎样的特征?

  板书:个位上是0、2、4、6、8的数都是2的倍数。

  (5)验证:除了这些数以外,其它2的`倍数也有这样的特征吗?请举例验证。

  (6)填一填:下面哪些数是2的倍数?1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。

  让学生独立完成后汇报。

  3.奇数、偶数的再认识

  自然数按是不是2的倍数来分可分为奇数和偶数两大类,2的倍数都是偶数,不是2的倍数就是奇数。

  4.那么既是2的倍数又是5的倍数有什么特征呢?

  (1)在5的倍数中找出2的倍数;

  (2)在2的倍数中找到5的倍数。

  比较:判断一个数是不是2或5的倍数,都是看什么?

  结论:个位上是0的数,既是2的倍数又是5的倍数。

  【课堂作业】

  1.完成教材第9页“做一做” 。

  2. 完成教材第11页练习三第1~2题。

  【课堂小结】

  1.现在,你们知道老师猜数的奥秘了吗?现在老师说数,请同学们判断出它是不是5或2的倍数。

  2.通过今天的学习,你有什么收获?还有什么问题?

  【课后作业】

  完成练习册中本课时练习。

  板书: 2、5的倍数的特征

  个位上是0或5的数都是5的倍数;

  个位上是0、2、4、6、8的数都是2的倍数;

  个位上是0的数,既是2的倍数又是5的倍数。

  教学反思

  通过这节课的教学,使我认识到数学课堂教学活动是一个活泼的、主动的、丰富多彩的活动空间。教学中,我从学生已有的生活经验出发,结合学生的认识规律,给学生提供有趣的情景,激发学生的探求欲望,创设观察、操作、合作交流的机会;让学生通过动脑、动手、动口,做他们想做的,在做的过程中观察知识,在合作交流中去思考、质疑。充分发挥学生的主体作用,让学生在活动中学习数学,使学生真正感受到学习数学的乐趣。密切联系学生的生活实际,使学生真正领略到数学就在我们身边,生活中处处有数学。

五年级数学下册教案2

  教材内容分析

  《找次品》是人教版数学五年级下册第七单元“数学广角”的内容。在现实生活中“次品”的情况各不相同,有的是外观与合格品不同,有的是所用质量不合格等。这节课的学习中要找的次品就是外观完全相同,但是质量有所差异,并且知道次品比合格品轻(或重),在所有待测物品中只有唯一的一个次品。

  教学目标

  1.知识和技能:通过观察、猜测、操作、画图、推理与合作交流验证等学习方法,探究找次品的策略,能够借助抽象记法对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样化到优化的思维过程。

  2.过程与方法:经历用天平测次品的过程,体验实验探究、发现运用的学习方法。

  3.情感态度与价值观:在学习活动中,体会数学的优化思想,感受数学知识的魅力,激发学习探究的欲望,培养学生的逻辑思维能力。

  学情分析

  五年级学生的思维水平总体上还处在具体运算操作的发展阶段,形象思维是他们的优势。由于在前段的学习中,学生已积累了探索数字规律的基本方法与策略,使学生学会灵活地、有序地思考,及时引导学生归纳出解决这类问题的最优策略,经历由

  多样到优化的思维过程。

  教学策略选择与设计

  “找次品”的教学,旨在通过“找次品”渗透优化思想,引导学生充分感受到数学与日常生活的密切联系。通过本节课的教学培养学生用数学的能力。提高学生数学思维能力和解决问题的能力。本节课以“找次品”的一系列操作活动为载体,让学生通过动手操作、观察等方式感受生活中解决问题方法的多样性,在此基础上,通过归纳、推理的方法体会运用最优化策略解决问题的有效性,感受数学的魅力。

  教具学具:

  12个小方块课件

  教学过程

  课前交流

  视频(美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是一个不合格的零件(橡皮圈)引起的。同学们有什么要说的吗?(不合格产品又叫次品,次品虽小,可危害巨大。而在我们的生活中常常有一些看似完全相同的物品中混着一些质量不同轻一点或重一点的次品伤害着我们。如果我们提前发现他们就能避免一些伤害。)

  说到次品老师想起了一位世界名人?你们想认识吗?

  生:(想)

  出示比尔盖茨的图像,让学生说说对他的了解。

  师赞美(同学们知识真丰富一定是一群喜欢读书喜欢学习的好孩子。老师给你们点个赞。)

  看到比尔盖茨那充满自信的笑充满智慧的笑我希望我们同学和比尔盖茨一样时刻充满自信的笑智慧的笑,同学们能做到吗?同学们准备好了吗?上课

  一.创设情景生成问题

  1.出示情景生成问题

  这节课我们一起学习如何去寻找外观相同,只有轻重不同的次品。

  比尔盖茨公司在招聘员工的时候出过一道找次品的题目,想看吗?

  生:想

  出示课件:这儿有81瓶口香糖,其中有一瓶比其他的稍轻。如果只能用没有砝码的天平来测量,至少要称多少次才能保证把它找出来呢?

  读完题目你知道了什么?有什么不明白的地方?

  生(没砝码的天平怎么用)引导学生自己解决。

  师小结用没有砝码的天平去称的时候次品可能在左边,也可能在右边,还可能在旁边,刚才同学们提的问题没砝码天平怎么使用现在明白了吗?生(明白)谁还有问题吗?

  师:保证这两个字是什么意思?

  生:自由回答,

  师小结保证找到就是一定找到,那怕最坏的情况下也要找出来,不考虑运气好的情况,要考虑运气最坏的情况。

  师:现在题目的意思理解了吗?

  谁来大胆的猜测猜测。学生自由回答。这只是我们的猜测,那怎样验证我们的猜测呢?是不是感觉有点难啊?

  当我们遇到困难时该怎么办呢?(课件展示)老子的`话

  老子告诉我们从容易的开始,从容易的研究解决过程之中找到规律发现方法然后再去研究解决难的问题。那你们认为从几瓶找一瓶次品最好找呢?

  生;有的说2瓶有的说3瓶那就从2瓶开始可以吗?

  2.探索规律

  (1)从2瓶中找1瓶次品

  如果从两瓶中找出一瓶次品请问怎么用没有砝码的天平去把它称出来呢?

  生:两端各放一瓶上翘的那瓶就是次品。再找一名学生汇报(回答的真好,掌声鼓励)

  【设计意图(从2瓶中找一瓶次品巩固学生对没砝码天平的运用。】

  (2)从3瓶中找1瓶次品

  二瓶好了接下来我们研究三瓶行吗?(课件展示)生思考,那谁上来给大家演示一下掌声有请(学生边说边演示)看谁听的

  认真,观察的仔细,谁再来说说?看一看电脑是不是这样做的,在数学上老师把它记录下来可以这样记录:(板书)

  刚才交流的时候大家用了一个词特别好

  如果

  那么

  如果天平平衡那么剩下的那瓶是次品。天平不平衡那么上翘的那瓶是次品。

  【设计意图:从3瓶中找一瓶次品巩固学生对没砝码天平的运用,初步感受找次品前先把待测物品分一分。】

  称一次就知道次品在哪份中,还知道那两份中没次品。接下来研究从5瓶中找一瓶次品,独立思考,同桌交流,全班汇报。

  比较从3瓶、5瓶中找次品让说发现?师生共同总结。带着我们的发现接下来我们增加点难度,同学们你们敢去挑战吗?从你们回答的声音中老师听到了你们的信心。

  (3)从8、9、11、12瓶中找1瓶次品那我们以小组为单位来研究.(课件)找学生读提示。我希望我们同学在小组内能够发挥团队的力量,开始(学生操作交流)。

  老师巡视时非常感动,同学们很会合作学习,分工明确,认真研究,发挥了团队的力量,找到了找次品的不同方法,我们找一组上来分享他们的成果。这个小组研究的是从九瓶糖中找一瓶次品,让学生说一说每种方法是怎么分的?怎么称的?用了几次?仔细观察这组数据你认为哪种方法最好保证找到次品所用

  的次数最少?为什么?

  (4)总结规律小组交流汇报结论分成三份,并且平均分保证找到次品所称的次数最少用十二验证。通过验证我们知道分成三份的,并且平均分保证找到次品所称的次数最少。那不能平均分的又有什么规律可寻那?让研究八瓶的小组上前面和大家一起分享,仔细观察这组数据你认为哪种方法最好保证找到次品所用的次数最少?我们就来研究研究这种方法。这种方法怎么分的?怎么称的?

  学生汇报的基础上,得出不能平均分的也分成三份,并且尽量平均分保证找到次品所称的次数最少呢?用十一去验证。通过验证我们知道不能平均分的也分成三份,并且尽量平均分保证找到次品所称的次数最少。通过我们同学的共同努力我们在找次品的行程中完成了一次飞跃找到了找次品的最优方法。

  【设计意图:让学生自主探索找次品的方法,共同优化出最优方法,感受优化过程,并且明白为什么这种方法最优化。】

  三、巩固应用内化提高

  现在我们找到了找次品的技巧,那么我们应用我们刚才学到的知识去比尔盖茨的公司应聘好吗?八十一能平均分成三份吗?我们应该怎么办?自己完成。呼应猜测。

  【设计意图:应用回归】

  四、回顾整理内化提升

  让学生说收获,生自由说。老师总结:

  【设计意图:让学生明白数学学习方法,数学思想,探究思路是一生的财富。】

五年级数学下册教案3

  第一单元方程

  第一课时 方程的意义

  教学内容:教科书第1~2页的内容及练习一的1~3题。

  教学目标:1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、培养学生概括、归纳的能力。

  教学过程:

  一、教学例1

  出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗?

  学生在本子上写。

  指名回答,板书:50+50=100

  含有等号的式子叫等式,它表示等号两边的结果是相等的。

  二、教学例2

  学生自学

  要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。

  2、小组同学交流四道算式,最后达成统一认识:

  X+50>100 X+50=100

  X+50<100 X+X=100

  根据学生的回答,教师板书这4道算式。

  3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

  学生可能会这样分:

  第一种:

  X+50>100 X+50=100

  X+50<100 X+X=100

  第二种:

  X+50>100 X+X=100

  X+50<100

  X+50=100

  引导学生理解第一种分法:

  你为什么这样分,说说你的想法。

  小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

  指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。

  提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

  那X+50>100 、X+50<100为什么不是方程呢?

  提问:那等式和方程有什么关系呢,在小组里交流。

  方程一定是等式,但等式不一定是方程。

  三、完成“试一试”、“练一练”

  学生独立完成。

  集体订正时围绕“含有未知数的等式”进一步理解方程的含义

  四、课堂作业:练习一的1、2、3。

  板书:

  X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式是方程。

  第二课时 等式的性质(一)

  教学内容:教科书第3~4页的内容,练习一的4~6题。

  教学目标:1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  2、根据等式的性质(一)学会解决含有加、减号的方程。

  3、有意识地培养学生的自学能力。

  教学过程:

  一、教学例3

  出示图,学生根据图独立填空。

  根据学生的回答,板书:

  20=20 20+10=20+10

  X=50 X+20=50+20

  50+a=50+a 50+a-a=50+a-a

  X+20=70 X+20-20=70-20

  提问:比较两边的算式,你有什么发现,在小组里说说。

  全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然是等式。这是等式的性质。

  独立完成“练一练”第1题

  二、教学例4

  学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。

  全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,学生解决不了的教师解决。

  一是方法:根据等式的性质把含有未知数的.这边化简成就含有一个未知数。

  二是检验:把计算的结果代到原式,看左右两边是否相等。

  三强调书写的格式。

  小结:求方程中未知数值的过程,叫做解方程。

  完成“试一试”“练一练”的第2题。

  学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分析错误原因,帮助他们弄懂。

  三、课堂作业

  练习一的第4、5、6题。

  第4、6题做在书上,第5题写在作业本上。

  板书:

  等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  这时等式的性质。

  X+10=50

  解: X+10-10=50-10

  X=40

  第三课时 练习

  教学内容:教科书第6页的7~12题。

  教学要求:1、通过练习,使学生进一步体会方程的含义。

  2、进一步理解等式的性质,能根据等式的性质正确地解方程。

  教学过程:

  一、基础练习

  1、说出下面的式子哪些是方程,哪些不是,为什么?

  20+17=37 12-Y=4 a+12=35

  21-b<14 x=14+23 16+a=27+b

  2、解方程

  X+125=370 520+X=710 X-4.9=6.4

  120-X=25 7.8+X=2.5 X+8.5=12

  学生独立完成,指名学生板演。

  选3题让学生说说想的过程。

  集体订正,帮有错的同学分析错误原因,使其明白。

  二、完成第6页的7~12题。

  第7题

  学生独立完成后指名回答,让学生说说是怎样想的。

  使学生明白:根据等式的性质是含有未知数的一边只剩下未知数,就能很快知道最后的结果。

  第9题

  先由学生独立完成。

  指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我们在做题时要注意一些什么?

  第8题

  学生独立完成,指名板演。

  教师要特别关注前面解题还有错的学生,争取人人过关。

  集体订正,分析错误原因。

  第12题

  学生读题后独立思考解决问题的方法。

  小组内交流。

  全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。

  三、课堂作业

  第6页的第10、11题。

  第四课时

  教学内容:教材第7~10页,例5、例6及相应的试一试,练一练,练习二第1~3题

  教学目标:

  1、使学生进一步理解并掌握等式的性质,即在等式两边都乘或除以同一个数(除以一个数时0除外),所得结果仍然是等式的性质。

  2、使学生掌握利用相应的性质解一步计算的方程。

  教学重点:使学生理解并掌握在等式两边都乘或除以同一个数(除以一个数时0除外)这一等式的性质。

  教学过程:

  一、复习等式的性质

  1、前一节课我们学习了等式的性质,谁还记得?

  2、在一个等式两边同时加上或减去同一个数,所得结果仍然是等式。那同学们猜想一下,如果在一个等式两边同时乘或除以同一个数(除以一个数时0除外),所得结果还会是等式吗?

  3、生自由猜想,指名说说自己的理由。

  4、那么,下面我们就通过学习来验证一下我们的猜想。

  二、教学例五

  1、引导学生仔细观察例五图,并看图填空。

  2、集体核对

  3、通过这些图和算式,你有什么发现?

  4、接下来,请大家要课练本上任意写一个等式。请你将这个等式两边同时乘同一个数,计算并观察一下,还是等式吗?再将这个等式两边同时除以同一个数,还是等式吗?能同时除以0吗?

  5、通过刚才的活动,你又有什么发现?

  6、引导学生初步总结等式的性质(关于乘除的)

  7、板书出示:等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

  8、练一练第一题

  ⑴、指名读题

  ⑵、生独立填写在书上,集体核对

  ⑶、你是根据什么来填写的?

  三、教学例六

  1、出示例六教学挂图,指名读题,同时要求学生仔细观察例六图

  2、长方形的面积怎样计算?

  3、根据题意怎样列出方程?指名口答,你是怎么想的?板书:40X=960

  4、在计算时,方程两边都要除以几?为什么?

  5、生独立计算,指名上黑板。全班核对

  6、计算出X=24后,我们怎样才能确定这个数是否正确?请大家口算检验一下。最后将例六填写完整。

  7、小结:在刚才计算例六的过程中,我们将方程的两边都同时除以40,这是为什么?为什么将等式两边都同时除以40,等式仍成立?

  8、试一试

  ⑴、出示X÷0.2=0.8

  ⑵、生独立解方程,指名上黑板。师巡视并帮助有困难的学生。

  ⑶、集体核对,指名口答:你是怎样解方程的?为什么可以这样做?

  9、练一练第二题

  ⑴、生独立解方程。指名上黑板,师巡视。

  ⑵、集体订正。

  四、巩固练习

  1、练习二第一题

  ⑴、请每位同学在小组里说一说每一题应该怎样解,指名口答。(第三组)

  ⑵、生独立解方程。指名上黑板

  ⑶、集体核对

  2、练习二第二题

  ⑴、指名读题

  ⑵、生独立填写,师巡视。

  ⑶、你在填的时候是怎样想的?

  五、课堂作业

  练习二第三题

五年级数学下册教案4

  学习目标:

  1.使学生初步理解并掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的规律之间的联系。

  2.会运用分数基本性质把不同分母的分数化成分母相同而大小不变的分数。

  3.培养学生的迁移类推能力、抽象概括能力和观察能力。让学生体会到数学知识间的内在联系,感受学习数学知识的价值。

  学习重点:归纳分数的基本性质,并运用性质转化分数。

  学习难点:归纳分数的基本性质,并运用性质转化分数。

  学习准备:教学课件。

  学习过程:

  环节预设 教师活动 学生活动 设计意图

  一、复习导入 1.直接口答下面各题的商,说说是怎样想的?根据什么知识?

  120÷20=

  (12O×3)÷(30×3)=

  (120÷10)÷(30÷10)=

  2、分数与除法有什么联系? 学生思考并回答问题 通过复习导入,引导学生观察思考,从而提出本节课课题。

  二、合作探究 1.教学教材第57页的例1。

  让学生拿3张同样的长方形纸片,平均分成2份、4份、8份,并分别表示其中的1份、2份、4份,涂上颜色,分别用分数表示涂色部分

  问:把3张纸条的左端对齐,平放在桌上。观察比较,你发现了什么?

  通过动手操作、观察比较,我们知道、、这三个分数的大小相等。这三个分数的分子、分母都不相同,但是它们的大小却完全相同,它们的分子、分母各是按照什么规律变化的呢?学生以小组为单位讨论,请代表发言。

  随着学生汇报,老师板书。

  教材59页第8题。

  观察以上例子,你得出什么结论?(学生讨论,汇报。)

  提问:这里“相同的数”是不是任何数都可以呢?为什么0要除外?(学生讨论)师:分子和分母如果都乘上0,则分数成为,而分数的`分母不能为O;又因为0不能作除数,所以分数的分子和分母也不能同时除以O。

  提问:你能不能根据分数与除法的关系和商不变的性质来说明分数的基本性质?

  2.教学例2

  出示例2。问:谁能说一说,在审题过程中要注意什么。(分析要点:①分母是12;②大小不变。)

  问:想一想,怎样不改变分数大小,使分母变为12?应根据什么知识解决这个题的?

  学生试着在课本上填写,集体订正。

  问:在解答中应注意什么问题?

  3.完成教材第59页第8题。学生独立完成,再集体订正。

  请学生根据分数的基本性质思考并说明思路。 学生讨论交流并回答问题。 梳理整合学生零散的发现,让学生的认知逐步深入清晰、完整。

  三、巩固应用 1.完成教材第58页练习十四第1题。

  学生先独立涂色,然后比较大小并说明理由。

  2.完成教材第58页练习十四第3题。

  学生两人一组,由一人说一个分数,另一个人说出一个相等的分数。

  3.完成教材第58页练习十四第5题。

  引导学生先应用分数的基本性质,判断哪几个分数是相等的,然后在直线上把这个点画出来。 老师启发学生观察,推算出每个分数中分子与分母可以同时除以几,得到一个与原分数相等的分数。

  4.完成教材第58页练习十四第6题。 学生进行思考、解答。 通过习题的演练,让学生将知识点进一步应用到实际解决问题当中。

  四、课堂小结 通过今天的学习,你都有哪些收获呢?说一说学会了什么,自己表现怎么样。 学生思考并回答 让学生体验成功的喜悦,进一步拓展学生的思维和创造能力。

五年级数学下册教案5

  教学内容:观察物体

  教学目标:

  1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

  2.培养学生从不同角度观察,分析事物的能力。

  3.培养学生构建简单的空间想象力。

  重点:帮助学生构建初步的空间想象力。

  难点:帮助学生构建初步的`空间想象力。

  教学过程:

  一、谜语导入

  请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

  二、合作探究

  (一)整体观察

  1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

  你观察到的正方体是什么样的?

  在你的位置上观察,你看到了哪几个面?

  2.学生汇报交流。

  学生自由走动,观察。汇报交流。

  3.解释应用

  教师出示两个正方体的立体图,一个有虚线,另一个没有。

  提问:谁能用刚学到的知识解释一下正方体为什么这样画?

  学生解释说明。

  (二)分别从三个面进行观察(出示例1)

  1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

  学生离开座位自由观察。

  2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

  总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

  三、拓展应用

  1.做教科书例2

  2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

  学生玩游戏,教师指导。

  四、总结

  本节课你学会了什么?

  五、作业布置

  兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。

  1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

  2.从一个面看到物体的形状,可以有多种不同的摆放方式。

  3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

五年级数学下册教案6

  一、教学内容

  课本P38~40。

  二、教学目标

  1.知识与技能

  使学生理解体积的意义;认识常用的体积单位:立方米、立方分米、立方厘米。

  2.过程与方法

  让学生经历探索体积和体积单位的过程,发展学生的空间观察能力和培养学生的推理能力。

  3.情感、态度与价值观

  使学生形成空间观念,体验所学知识与现实生活的联系,使其能运用所学知识解决生活中简单的问题,从中获得价值体验。

  三、重点难点

  1.教学重点

  体积概念的建立以及对体积计量方法的理解。

  2.教学难点

  感知物体的体积以及建立体积单位的概念。

  四、教学用具

  1立方米、1立方分米、1立方厘米的模型;水杯,水,沙子,大小石块(用线系好),木块等;10个1立方厘米的正方体。

  五、教学设计

  (一)铺垫选择研究方向

  1.引入:在装有半杯蓝色水的玻璃杯中(先在水面处做个记号)放入一块石块。

  2.观察思考。

  (视频脚本三:长方体和正方体4.土豆放入水杯的动画片。)

  (1)水面的位置发生了什么变化?杯中的水为什么会上升?

  (2)杯中的水为什么会上升,这就是我们今天要研究的内容。

  (二)发现并认识体积

  1.想一想:是不是所有的物体都占有一定的空间?用桌上提供的物品验证。有:木块、沙子、火柴盒、工具箱、石块、玻璃球……

  2.教师巡视与学生一起探讨。

  3.提问汇报。

  (1)你们是怎样进行实验的?

  (2)你们在实验过程中观察到了什么现象?

  (3)学生动手操作。

  (4)学生回答。

  生:我们拿出自带的装满细沙的杯子,先把细沙倒在纸上,把一块木块放入杯中,然后再把细沙倒入杯中,沙子不能全部倒入杯中,有剩余部分,因为木块占有一定空间。

  4.表象再现。

  (1)闭眼回忆刚才验证物体的样子。

  (2)学生闭眼想象。

  5.抽象体积的概念。

  (1)物体所占的空间一样吗?

  (2)学生回答。

  生:我们先把小石块放入杯中,然后在水面上升处作个记号。取出石块,再放入大一些的石块,发现水面比原来的水面高了。

  (3)为什么上升的水面会比原来的高?

  (4)学生回答。

  生:因为大石块占的空间大,所以上升的水面比原来的高。也就是说,物体的大小不一样,所占空间的大小也不一样。

  6.看来物体所占空间有大有小,物体所占空间的大小就是物体的体积。

  (1)什么叫物体的体积?

  (2)学生回答:物体所占空间的大小叫做物体的体积。

  7.看书质疑。

  (三)自我探索体积单位

  1.要知道一个物体的体积有多大,或者一个物体的体积比另一个物体的体积大多少或少多少,该怎么办?这就需要计量,计量体积要用体积单位。【 】

  2.猜想。

  你听说过哪些体积单位?

  (1)常用的体积单位有哪些?

  (2)汇报:将你们学习到的说给大家听听。

  (3)学生回答。

  棱长1厘米的正方体,体积是1立方厘米;

  棱长1分米的正方体,体积是1立方分米;

  棱长1米的正方体,体积是1立方米。

  (视频脚本三:第三单元长方体和正方体5.视频“1立方米的空间有多大”的演示)

  3.估量体积单位。

  (1)1立方厘米的空间有多大?比画比画。

  (2)什么物体的体积大约接近1立方厘米?

  (3)1立方分米有多大?比画比画。

  (4)什么物体的体积接近1立方分米?

  (5)1立方米呢?

  (6)1立方米有多大?利用一些工具体验大小,你们钻进去试一试。(准备3个米尺)

  4.填入适当的单位。

  (1)橡皮的体积大约是5()。

  (2)桌子的体积大约是240()。

  5.质疑。

  (四)体积的初步计量

  1.教师演示(学生跟着摆)。

  (1)出示2个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?

  (2)出示6个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?

  (3)(改变长方体的摆法)这是长方体吗?它的。体积是多少?为什么仍是6立方厘米?

  (4)(再改变形状)形状变了,体积有没有变?为什么?

  (5)为什么不管摆什么形状,体积都是6立方厘米?

  2.学具操作。

  (1)你们每人桌上都放有10个1立方厘米的正方体,现在请你们摆一个体积是9立方厘米的长方体,想想怎么摆?

  (2)为什么所摆的长方体的体积都是9立方厘米?

  3.归纳概括。

  (四人一组讨论)根据刚才所摆的图形,你怎么知道这些物体的体积是多少的`?

  (五)巩固练习

  1.填空

  常用的体积单位有()、()、()。

  常用的面积单位有()、()、()。

  常用的长度单位有()、()、()。

  棱长()的正方体的体积是1立方厘米。

  棱长()的正方体的体积是1立方分米。

  棱长()的正方体的体积是1立方米。

  2.在括号里填上适当的单位。

  (1)一根粉笔的体积大约是10()。

  (2)讲台桌的体积大约是0.4()。

  (3)一本《新华字典》的体积大约是0.35()。

  (4)一张信纸的面积大约是5()。

  (5)一块城砖的体积大约是3()。

  3.拼一拼,说说是由几个1立方厘米的正方体组成的?

  (六)全课总结

  通过这节课你有哪些心得和体会?你还有哪些问题?

  (七)板书设计

  体积和体积单位

  意义:物体所占空间的大小叫做物体的体积。

  单位:立方厘米、立方分米、立方米。

  计量:要看这个物体含有多少个体积单位。

五年级数学下册教案7

  【设计理念】

  数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度。

  【教学内容】

  人教版五年级下册第23~24页“质数与合数”。

  【学情与教材分析】

  本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。

  【教学目标】

  1.让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。

  2.把握整数按因数个数的分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。

  3.通过研究质数与合数特征的学习活动,体会学习数学的思想方法。

  【教学准备】

  课件;练习纸每生一张。

  【教学过程】

  活动一:构建质数和合数概念

  1.引导学生按要求列出乘法算式:“因数用整数、不用1”。

  教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。

  学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。

  2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。

  教师依次在这些质数的.前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。

  【设计意图】

  “活动一”全过程教师基本不言语,只用手势或神情来组织教学,给学生一个神秘感,在创设静谧的氛围中静心体会质数与合数的区别。

  活动二:讨论质数和合数的特征

  1.师:“从这些乘法算式中,你发现了什么?

  学情预设:学生有可能说出质数都是奇数;对策:教师指出2是质数、15是合数;

  合数可以写出乘法算式;如果不用1,质数无法写出乘法算式。

  2.教师擦除“不用1”,学生列出相应的乘法算式,再进一步用因数的个数来探讨质数和合数的概念。

  师:观察因数的个数,你又发现了什么?

  从乘法算式中,学生很快并能清晰地发现质数只有1和它本身两个因数,而合数则除了1和它本身两个因数外,还有别的因数(至少三个因数)。

  3.根据学生回答板书。

  4.讨论:“1”是质数还是合数?

  学情预设:有的学生可能认为:1有两个因数,一个是1,一个是它本身,1应该是质数;有的学生可能认为:1的本身还是1,所以1应该只有一个因数;有的学生可能认为:1既不是质数也不是合数。

  师把板书写完整。

  5.小结:谁能用自己的语言说一说什么样的数叫质数?什么样的数叫合数?怎样判断一个数是质数还是合数?

  【设计意图】

  预留足够的时间让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。并尝试根据因数的个数归纳出质数与合数的概念,学会运用质数和合数的特征进行判断,充分感受到知识之间既有区别,又有联系。

  活动三:应用概念寻找或判断质数

  1.继续寻找30以内的其它质数。

  2.做一做:出示数字卡片:17、22、29、35、37、87、93、96、1,将数字卡片填入质数与合数相应的集合圈里。

  3.下面的说法正确吗?说说你的理由。

  ⑴所有的奇数都是质数。()

  ⑵所有的偶数都是合数。()

  ⑶在1、2、3、4、5……中,除了质数以外都是合数。()

  ⑷两个质数的和是偶数。()

  【设计意图】

  通过不断的寻找、发现与判断质数的练习中,使学生意识可以用合理的方法来判断,巩固质数与合数特征的认识。

  活动四:拓展延伸深化概念

  1.你知道他们各是多少吗?(在小组内交流各自的想法后汇报)

  ⑴两个质数的和是10,积是21,他们各是多少?

  ⑵两个质数的和是20,积是91,他们各是多少?

  ⑶最小的质数是?最小的合数是?

  2.在括号里填上质数:

  8=()+()12=()+()28=()+()

  3.数学小阅读:哥德巴赫猜想。

  同学们你们知道吗,刚才你们正在尝试解决一道世界难题,做了一件很有价值的事,这个世界难题就是:是不是所有大于2的偶数,都可以写成两个质数的和呢?这个问题是德国数学家哥德巴赫最先提出的,所以被称为哥德巴赫猜想。世界各国的数学家都想攻克这一难题,但至今还未解决。我国数学家陈景润在这一领域已经取得了举世瞩目的成果。

  请同学们进行数学小阅读:哥德巴赫猜想。课后,感兴趣的同学们也可以查找相关书籍或上网查阅相关资料。

  【设计意图】

  在适度拓展中,尝试解决“任何大于2的偶数,都可以写成两个质数的和”的哥德巴赫猜想。在数学小阅读中,让学生了解数学发展的历史,感受数学文化的魅力,同时留有空间,让学生课后探究。

  活动五:总结

  这节课你有哪些收获?

五年级数学下册教案8

  学习内容:

  人教版小学数学五年级下册教材第12—13页。

  学习目标:

  1.我能理解因数与倍数的含义。

  2.我会有序地思考,掌握了找一个数的因数的方法。

  3.我知道一个数的因数的个数是有限的。

  学习重点:

  理解因数和倍数的`含义,掌握求一个数的因数的方法。

  学习难点:

  能熟练地找一个数的因数。

  教学过程:

  一、导入新课

  二、检查独学

  1.互动分享收获。

  2.质疑探讨。

  三、合作探究

  1.小组讨论:乘法算式中的因数和这里讲的因数一样吗?

  (1)我的想法:________________________________

  (2)小组代表交流、汇报。

  (3)自读课本第12页下面的一段话。

  2.自学课本第13页例1。思考:

  (1)18的因数有________、________、________、________、________、________,共 有________个。

  (2)18的最小因数是________,最大因数是________。它的因数的个数是________的。

  (3)也可以这样表示: 18的因数

  3.组内交流并讨论:怎样找最快,而且不容易遗漏?

  我的想法:________________________________

  4.小组代表汇报,总结。

  5.试试身手(第13页“做一做”)。

五年级数学下册教案9

  教学目标

  (1)知识目标:

  ①使学生理解分数化成小数的方法,能根据分数与除法的关系把分数化成小数。

  ②使学生认识能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。

  (2)能力目标:在学生对能化成有限小数的最简分数的过程的参与讨论中培养学生观察、归纳、解决问题的能力。 (3)情感目标:在找出能化成有限小数的最简分数的规律过程中培养学生对待知识的科学态度和探索精神。

  教学重难点

  教学重点:分数与小数互化的方法

  教学难点:能化成有限小数的分数的特点。

  教学过程

  一、设置悬念 导入新课

  1、师:在我们的日常生活中,经常会遇到这样的问题:“小红和小明进行登山比赛,从山下到山顶,小红用了0.8小时,小明用了3/4小时,哪位同学登得快?”

  要解决这个问题,你有什么好办法?

  生1:把小数化成分数,再比较。

  生2:把分数化成小数,再比较。

  师:大家的想法都很好,要想比较两个人的速度,需要把这两个数统一成一类数,要么都是小数,要么都是分数,这样才能便于比较,今天这节课我们就来学习分数、小数互化的一般方法。(板书课题)

  二、自主探究 学习新知

  1、自主探究小数化分数的方法:

  (1)出示例1:把一条3米长的绳子,平均分成10段,每段长多少米?

  师:谁来列出算式?

  生:3÷10=0.3米

  3÷10= 3/10米

  师:还是这根绳子,如果平均分成5段,每段长多少米?

  生:3÷5=0.6米

  3÷5=3/5米

  师:观察一下上面两组算式,你发现了什么?

  生:0.3= 3/10

  0.6=3/5

  师:两种不同形式结果是相等的,说明小数和分数是可以相互转化的。同学们想一想,能不能把一个小数直接化成分数呢?

  怎样能较快地把小数化成分数?

  0.3 0.6

  问题:请你自己试着把 0.3 和 0.6 转化成分数。

  学生独立完成。课件演示。

  问题:1.说说你的想法。 2.这样转化的依据是什么? 3.把小数化成分数要注意什么?

  生:能,因为小数表示的就是十分之几,百分之几,千分之几。.。的数,所以可以直接化成分母是10、100、1000.。.的分数,再化简就行了。

  (2)师:试一试,请大家在练习本上,尝试把下面的小数化成分数:

  0.07= 0.24= 0.123=

  (3)学生独立解答,教师巡视。请学生到黑板板演,并讲解自己把小数化成分数的方法,师生小结如下: 把小数化成分数,原来有几位小数,就在1的后面写几个0做分母,原来的小数去掉小数点做分子。

  师:小数化成分数,需要注意什么呢?

  生:需要化简的`分数,要化简成最简分数,还要看清楚原来的小数是几位小数。

  2、自主探究把分数化成小数的一般方法:

  怎样能较快地把分数化成小数?

  把化成小数(不能化成有限小数的保留两位有效小数)。

  师:现在就请大家以小组为单位,讨论交流,用你们喜欢的方法做。

  问题:1.说说你的想法。 2.这样转化的依据是什么? 3.把分数化成小数要注意什么?

  要求:各小组推荐一名代表来作汇报。

  (2)交流反馈:

  请小组派代表板书,并讲解本组比较的过程及方法。其他同学质疑。(课件出示)

  师:你认为哪种方法比较简便?你是怎样把分数化成小数的?

  生:我认为把分数化成小数比较更简便,因为不需要通分了。

  生:分数化成小数的一般方法是:分子÷分母(除不尽时按要求保留几位小数)

  用分子除以分母除不尽时,要根据需要按“四舍五入”法保留几位小数。

  特殊方法:分母是10、100、1000.。.时,直接写成小数;分母是10、100、1000.。.的因数时,可以化成分母是10、100、1000.。.的分数,再写成小数。

  试一试: 把下面的分数化成小数(不能化成有限小数的保留两位小数)。问题:说说你的想法。

  三、巩固应用

  1、师:刚才我们一起研究了分数和小数的互化,让我们再次回到开始时提到的问题,你能解决了吗?下面就用你喜欢的方法比较吧!

  2、李阿姨和王叔叔谁打字快些?

  问题:

  1、 怎样比较它们的大小?

  2、 你想把小数转化成分数还是把分数转化成小数?

  强调学生说一说自己解决问题的过程,教师及时作出评价。

  1、把0.7 、9/10 、0.25 、43/100 、7/25 、13/47 这6个数按从小到大的

  顺序排列起来。

  拓展提高:

  你知道吗?

  下面这些分数中哪些可以化成有限小数?

  四、畅谈收获 知识小结

  谁来说一说你今天这节课都学习了哪些知识?你最大的收获是什么?

  五、布置作业 巩固知识

  作业:第78页练习十九, 第3题、第8题、第10题。

五年级数学下册教案10

  教学目标

  1、知识与技能

  (1)理解掌握质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数;

  (2)能正确判断一个数是质数还是合数。

  (3)能判断两个自然上的和是奇数还是偶数。

  2、过程与方法

  引导学生通过动手操作、观察比较、猜想验证、理解感悟质数、合数的含义;

  3、情感态度与价值观

  培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

  教学重点

  理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

  教学难点

  能运用一定的方法,从不同的角度判断、感悟质数合数。

  教学方法

  启发式教学、自主探索、合作交流、讨论法、讲解法。

  课前准备

  多媒体课件

  课时安排

  1课时

  教学过程

  (一)激趣导入。

  一、创设情境,引入新课(课件第2张)

  1.谈话:师:同学们,这节课我们先来做一个抢答游戏,看你们对以前学过的知识掌握的怎么样。

  2.抢答:请同学们以最快的速度说出下面的数有几个因数。

  师出示数,学生抢答因数的个数。

  3、思考:

  (1)一个数的最小因数是几?最大因数是几?(课件第3张)

  (2)一个数的因数是有限的还是无限的?

  (3)怎样找一个数的因数?

  生1:一个数是最小因数是1,最大因数是它本身。

  生2:一个数因数的个数是有限的。

  生3:找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。

  设计意图

  用抢答游戏的方式引入课题,引起学生的兴趣,通过对旧知识的复习,为下面要学习的质数与合数做准备。

  4、师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。

  (板书课题)

  (二)探究新知

  1、找出1-20各数的因数,看看它们的因数的个数有什么规律。

  (1)学生小组内交流,写出1--20各数的因数,看看它们的因数的个数有什么特点。(课件第4张演示)

  1的因数有:1 11的因数有:1,11

  2的因数有:1,2 12的因数有:1,2,3,4,6,12

  3的因数有:1,3 13的因数有:1,13

  4的因数有:1,2,4 14的因数有:1,2,7,14

  5的因数有:1,5 15的因数有:1,3,5,15

  6的因数有:1,2,3,6 16的因数有:1,2,4,8,16

  7的因数有:1,7 17的因数有:1,17

  8的因数有:1,2,4,8 18的因数有:1,2,3,6,9,18

  9的因数有:1,3,9 19的因数有:1,19

  10的因数有:1,2,5,10 20的因数有:1,2,4,5,10,20

  (2)师:观察它们因数的个数,你发现了什么?

  小组讨论:根据因数的个数,你觉得可以怎样分类?

  (3)(课件第6张)

  生1:有的数只有两个因数,如5的因数是1和5。1只有一个因数1。

  生2:有的数的因数不止两个……我们来分分类吧!

  2、学习质数与合数(出示课件第7张)

  师:一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。如2、3、5、7都是质数。

  一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。

  1既不是质数,也不是合数。

  3、做质数表。(课件第8张)

  (1)找出100以内的质数,做一个质数表。

  (2)学生讨论:怎样找100以内的质数?说说你的方法。

  (课件第10张)

  生1:可以把每个数都验证一下,看哪些数是质数。

  生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。3的倍数也可以……

  划到几的倍数就可以了?

  生3:划到7的倍数就可以了。

  (3)(课件第11张演示)剩下的数都是质数。

  (4)师出示100以内的质数表(课件第12张)

  4、牛刀小试。(课件第13张)

  (1)将下面的各数分别填入指定的圈内。

  2 27 37 11 58 61 73 83 95

  (2)两个质数,和是10,积是21,这两个质数是多少?

  生:21=3×7,3和7都是质数,而且3+7=10,所以这两个质数就是3和7。

  两个质数,和是7,积是10,这两个质数是多少?

  10=2×5,2和5都是质数,而且2+5=7,所以这两个质数就是2和5。

  5、探索两数之和的奇偶性。(课件第15张)

  师:奇数与偶数的和是奇数还是偶数?奇数与奇数的和是奇数还是偶数?偶数与偶数的和呢?

  (1)师:从题目中你知道了什么?

  生1:题目让我们对奇数、偶数的和做一些探索。

  生2:我把问题表示成这样……

  (2)小组讨论:你怎样判断任意两个整数的和是奇数还是偶数?

  (3)汇报交流:

  生1:我随便找几个奇数、偶数,加起来看一看。(课件第17张)

  奇数:5,7,9,11,…

  偶数:8,12,20,24,…

  5+7=12

  7+9=16

  ……

  奇数+奇数=偶数

  5+8=13

  7+12=19

  ……

  奇数+偶数=奇数

  8+12=20

  12+20=32

  ……

  偶数+偶数=偶数

  (课件第18张)生2:奇数除以2余1

  偶数除以2余0

  奇数加偶数的和除以2还余1,所以,奇数+偶数=奇数。

  奇数加奇数的和除以2余0,所以,奇数+奇数=偶数。

  偶数加偶数的和除以2还余0,所以,偶数+偶数=偶数。

  (4)师:同桌讨论:这个结论正确吗?你还有其他的方法吗?试一试。

  同桌找一些大数,验证一下所得的结论是否正确。

  (5)(课件第20张)汇报交流:

  534+319=853

  所以:偶数+奇数=奇数

  681+249=930

  所以:奇数+奇数=偶数

  564+232=796

  所以:偶数+偶数=偶数

  设计意图

  用归纳的方法得出结论,培养学生的能力。

  6、火眼金睛辨对错。(课件第21张)

  (1)所有的奇数都是质数。(×)

  (2)所有的偶数都是合数。(×)

  (3)在1,2,3,4,5中,除了质数以外都是合数。(×)

  (4)两个质数的`和是偶数。(×)

  (5)两个奇数的和是偶数。(√)

  7、小结:刚才的学习你学会了什么?(课件第22张)

  (1)质数与合数的概念。

  一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

  一个数,除了1和它本身还有别的因数,这样的数叫做合数。

  (2)1既不是质数,也不是合数。

  (3)自然数可以分为质数、合数和1。

  (4)偶数+奇数=奇数

  奇数+奇数=偶数

  偶数+偶数=偶数

  (三)课堂练习

  谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?

  1、写出下面各数的因数。(课件第23张)

  (1)在50以内的自然数中,最大的质数是(47),最小的合数是(4)。

  (2)既是质数又是奇数的最小一位数是(3)。

  (3)如果两个质数的和是24,可以是(5)+( 19),(7)+(17)或(11)+(23)。

  (4)在自然数中,最小的奇数是(1),最小的偶数是(0),最小的质数是(2),最小的合数是(4)。

  2、不计算,判断下面算式的结果是奇数还是偶数。(课件第24张)

  1+2+3+4+…+40

  生:1-40的自然数中,奇数和偶数各有20个,因为奇数+奇数=偶数,20个奇数相加和是偶数,偶数+偶数=偶数,20个偶数相加和是偶数,所以最后结果一定是偶数。

  (四)拓展提高

  算一算:3个不同质数的和是最小合数的平方,这3个质数的积是多少?

  最小的合数是4,4?=16。

  哪3个质数的和是16呢?

  2+3+11=16

  2×3×11=66

  答:这3个质数的积是66。

  (五)课堂总结

  师:通过学习,你有什么收获?

  生交流:

  1、一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

  2、一个数,除了1和它本身还有别的因数,这样的数叫做合数。

  3.1既不是质数也不是合数。

  4、奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数

  (六)板书设计

  质数和合数

  一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

  一个数,除了1和它本身还有别的因数,这样的数叫做合数。

  1既不是质数也不是合数。

  教学反思

  在教学质数和合数这一课时,我运用了自主、合作、探究的教学方法,使学生在参与中产生求知欲望,调动学习积极性。首先用猜谜语的形式引入课题,在学生复习因数和倍数的知识的基础上,让学生独立写出1-20这20个数的因数,再根据因数多少进行分类,然后以小组为单位交流,学生通过交流,知道可以分为几种情况,从而引出质数、合数的概念。?在教学中教师努力放手,让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程。在合作交流中互相启发、互相激励、共同发展。学生经历和感受了合作、交流、成功、愉悦的情感体验。

  课堂上学生是“主角”,教师只是一个“配角”,最大限度地把时间和空间都留给学生,使每个学生都参仔细观察,认真思考,充分激发学生思维的主动性和积极性。在课堂中,要求学生观察1--20的因数的个数,自己按照一定的标准进行分类,分完后先小组内交流。说说你是按什么来分的?分成了哪几类?由于采用分的标准也必定不同,然后在让学生说标准的过程中,感悟到质数和合数的各自特征,一点点的提炼归纳出质数和合数的意义。培养学生的分类、观察、分析、归纳和交流的数学能力,建立正确的分类思想。整个过程都是学生在动手操作、交流讨论、归纳概括,而教师只是在关键之处适当点拔,引导学生质疑、释疑、归纳、

五年级数学下册教案11

  课题:

  列方程解应用题复习(行程问题)

  学情分析:

  相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

  教学目标(课时目标):

  1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

  2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

  3、逐步掌握画线段图分析题目的方法。

  教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

  教学难点:认识相遇的过程中理解运用等量关系的解决问题。

  教学准备:PPT、练习本

  教学过程:

  教学活动教学说明

  一、复习引入

  1、揭题

  2、常见的相遇问题类型(手势演示)

  (1)同时出发,相向而行

  (2)一车先行,另一车再行,相向而行

  (3)同时出发,途中一车暂停,相向而行

  二、基础练习

  1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

  (1)画线段图分析题意

  (2)找出等量关系

  (3)列式

  2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

  小结:(1)相加=总路程

  (2)相差=路程差

  3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

  小结:(3)到中点相等

  4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

  小结:(4)总路程相等

  三、巩固提升

  5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

  6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

  7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

  8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

  四、思维训练

  9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

  五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

  “相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

  通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

  板书设计:列方程解应用题(行程)

  相遇问题(1)相加=总路程

  (2)相差=路程差

  (3)到中点相等

  (4)总路程相等

  教学反思:

  行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

  1、合理组织安排教材,激发学生主动参与教学

  首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

  追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

  2、运用线段图进行教学,培养学生的分析、观察能力

  学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

  3、为学生提供充分的思考、分析的空间

  在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的'作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

  4、分层递进,满足不同层次需求

  在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

  总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级数学下册教案12

  学习内容

  3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题)

  第1课时课型新授

  学习目标

  1、使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

  2、引导学生学会判断一个数能否被3整除。

  3、培养学生分析、判断、概括的能力。

  教学重点

  理解并掌握3的倍数的特征

  教学难点

  会判断一个数能否被3整除。

  教具运用

  课件

  教学方法

  二次备课

  教学过程

  【复习导入】

  1、学生口述2的倍数的特征,5的倍数的特征。

  2、练习:下面哪些数是2的倍数?哪些数是5的倍数?

  324 153 345 2460 986 756

  教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

  板书课题:3的倍数的特征。

  【新课讲授】

  1、猜一猜:3的倍数有什么特征?

  2、算一算:先找出10个3的倍数。

  3×1=3 3×2=6 3×3=9

  3×4=123×5=15 3×6=18

  3×7=213×8=24 3×9=27

  3×10=30……

  观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

  提问:如果老师把这些3的`倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→21 15→5118→81 24→42 27→72

  教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  (以四人为一小组、分组讨论,然后汇报)

  汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  3、验证:下面各数,哪些数是3的倍数呢?

  21054 216 129 9231 9876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

  4、比一比(一组笔算,另一组用规律计算)。

  判断下面的数是不是3的倍数。

  34025003 1272 2967

  5、“做一做”,指导学生完成教材第10页“做一做”。

  (1)下列数中3的倍数有。

  143545100 332 876 74 88

  ①要求学生说出是怎样判断的。

  ②3的倍数有什么特征?

  (2)提示:

  ①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

  ②接着再考虑什么?(最小三位数是100)

  ③最后考虑又是3的倍数。(120)

  【课堂作业】

  完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

  【课堂小结】

  同学们,通过今天的学习活动,你有什么收获和感想?

  【课后作业】

  完成练习册中本课时练习。

  板书设计第2课时3的倍数的特征

  一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

  【作业设计】

  学习目标,教学方法,数学,教师,能力。

五年级数学下册教案13

  教学内容:

  二期教材四年级第一学期课本P22—23

  教材分析:

  本节内容主要是对常用的面积单位进行一个梳理,一方面进一步借助学生的低阶面积单位的表象累积形成平方千米的表象,另一方面,使学生熟悉平方厘米、平方分米、平方米、平方千米之间的进率关系,能够进行简单的换算。

  教学目标:

  (一)知识与技能

  1、初步学会根据实际需要,选用适当的面积单位,丰富面积单位的量感。

  2、借助问题情景,合作探究平方米与平方千米之间的进率,进一步丰富1平方千米的量感。

  (二)过程与方法

  经历常用的面积单位的梳理过程,自主建构面积单位的换算方法,初步提高整理归纳能力。

  (三)情感与态度

  逐步体会数学与日常生活的密切联系,感知数学的价值。

  重点难点:

  1、丰富1平方千米的量感,掌握常用面积单位间的换算方法。

  2、理解常用面积单位间进率的推算方法。

  教学过程:

  一、引入阶段

  1、感受平方千米

  同学们,你们觉得我们学校大吗?我们泗泾镇大吗?那么松江区呢?这些区域用我们新学的面积单位km2来表示,是多少呢?请看大屏幕:(出示)

  我们美丽的校园占地面积约0.03平方千米。

  我们家园——泗泾镇占地面积约24.2平方千米。

  我们的松江区总面积约604平方千米。

  你得到了什么信息?有什么感受?你觉得平方千米常用在什么样的区域?(对比,交流)

  小结:平方千米常用来表示面积大的区域。

  [从学生所处的生活环境展开,通过“区域大”但表示的“数字小”这一强烈对比,丰富平方千米的量感]

  2、感知常用的'小面积单位

  我们还学过哪些常用的面积单位?谁能从大到小说出来呢?它们之间的进率是多少呢?让我们用手势来比划一下它们的大小吧!1km2能用手势来表示吗?(不能)为什么?(1km2太大)

  板书

  km2 1 m2=100dm2 1 dm2=100cm2 [通过记忆性口答与形象的手势感知,双重复习所学面积单位,再现常用面积单位的表象。]

  3、感知练习

  同学们对面积单位的量感不错,就让我们打开课本P23页,完成第三题,比比看,谁填的有快又准

  在下面()中填入适当的面积单位(课本23页)。

  一张邮票的面积约9()

  一张乒乓球台面约410()

  一间教室的面积约63()

  一张软盘的面积约1()

  一个排球场占地约162()

  上海野生动物园占地约2()

  [在前面面积单位的充分感知铺垫下,通过填写适当的单位,促使学生将熟悉实物的某个面或某块区域与面积单位建立起联系,既诊断学生已学知识的掌握情况,又激活他们已有单位面积的量感。]

  二、探究阶段

  1、情景设疑:通过刚才的单位填写,同学们对面积单位的都很熟悉了,接着让我们来解决前面学习中留下的问题:(出示)如果1 m2可以挤下17人,那么1km2能不能挤得下整个上海的人?(上海总人口为16737700人)

  要想解决这个问题,我们需要知道什么?同桌交流:需要知道1 km2等于多少m2,即km2与m2之间的进率,就可以求出1km2可以挤多少人,最终把问题解决。

  2、合作探究:我们知道1 km2就是边长为1 km的正方形的面积,(出示边长为1 km的正方形图形)。

  那么km2与m2之间的进率是多少呢?你们能从1 km2的定义来找出它们之间的进率吗?请小组合作完成。

  (1)组内尝试解决,师巡视指导。

  (2)全班交流解法:(板书)

  1km × 1km = 1 km2

  1000m× 1000m = 1000000

  m2 1km2=1000000m2

  (3)再次交流:通过在1km2定义的关系式中把km转换成m,我们很容易就找到了它们之间的关系。现在让我们同桌之间再把这个过程互相交流一下。

  3、问题解决:知道了1km2=1000000m2,那么1 km2能不能挤得下整个上海的人呢?谁来说说看?指名交流。这个结果让你有什么想说的吗?

  4、完善面积单位进率:现在我们已经把所学的面积单位之间的进率都找到了,请同学们把P22的面积单位的关系填写完整。(媒体演示课本23页单位面积的累积过程)

  1 km2=()m2 1 m2=()dm2 1 dm2=()cm2

  [通过问题设疑,激发学生的求知欲,让学生主动去探究km2和m2的进率。为了使学生形成清晰的量感,启发学生从定义去推理,把学生的思维引入深处,从而让学生在合作的尝试计算中直观获得1km2=1000000m2。其实学生以前在平方米,平方分米,平方厘米间的进率时已经经历了这样一个推理过程,在这里学生运用以往的经验解决今天所学的新问题,体现了知识的迁移。通过平方米和平方千米间关系的探究,对学生进一步理解单位面积的含义和进率的由来,促进学生表象记忆的形成都有好处,也激发了学生的求知X和解决问题的兴趣,为以下单位换算提供了一个良好的情知背景。]

  三、运用阶段

  1、分层练习:(说出思考过程)

  (1)25 m2=()dm 23 km2=()m2

  (2)3400 dm2=()m2 9000000 m2=()km2 580cm2=()dm2

  (3)70000000 ㎡ —7k㎡=()k㎡

  [学生在三年级时已经积累了一些重量、长度、面积单位换算的经验,并且会用小数表示单位之间的转换。这里先安排两组“从高到低”与“从低到高”的单位转换练习,就想让学生通过尝试找到换算的一般方法:高级单位化成低级单位时乘进率,低级单位聚成高级单位时除以进率。从而在思考方法上予以归纳提升,建构单位换算的基本策略。接着出示带有不同单位的计算题,提高学生的综合运用能力。同时借助学生思考过程的表达,便于检测学生对方法的理解,发展他们的演绎思维。]

  2、拓展练习(同桌讨论)

  判断下列各题是否正确,错的请改正。

  (1)一个铅笔盒表面的宽度约5 c㎡

  (2)教室的面积约30d㎡

  (3)一个粉笔盒的表面约0.75 c㎡

  (4)上海市的总面积约6341000000k ㎡

  [在实际应用中,学生往往对长度单位和面积单位容易混淆,并且在选用面积单位时不善于实际问题的需要。通过判断纠错练习,一方面强化长度单位和面积单位的区别,另一方面想从“数”与“量”两个维度探索修改的方法(修正数据或计量单位),既巩固了单位面积的大小观念,又渗透小数点位置移动引起数的大小变化的思想,拓展了学生的思维。]

  3、生活应用:(小组合作)

  出示:为了扩大我国的绿化面积,人们要在长3km,宽2km的一块长方形的高原上植树,如果每平方米栽1棵树,运来60万棵树苗够吗?

  解决这个问题我们要先算出什么?需要注意什么?写出你们的解题过程。交流探讨并板书解题过程。

  [通过问题解决,再现本节课的重点新知“平方千米与平方米的转化”,同时让学生通过层层问题的分析,理清问题解决的思路,拓展思维,感受数学在生活问题解决中的应用价值。]

  四、总结

  这节课我们一起整理了“从平方厘米到平方千米”(板书)的面积单位,谁来谈谈这节课中你的收获?

五年级数学下册教案14

  一、教学目标:

  1、认识和掌握长方体的特征,理解长、宽、高的概念。

  2、能会计算长方体的棱长总和。

  3、培养学生的观察能力、操作能力及分析综合和抽象概括的能力,发展学生的创新意识。

  4、在学习的过程中,培养学生团结合作的精神。

  二、教学重点:

  掌握长方体的特征,认识长方体的长、宽、高。

  三、教学难点:

  初步建立“立体图形”的概念,形成表象。

  四、教具准备:

  多媒体教学设施及相关课件,长方体实物模型两个(其中一个两面是正方形的长方体)、长方体的框架一个。

  五、学具准备:

  学生每人准备一个长方体形状的纸盒和一把尺子。

  六、教学过程:

  一、导入课题:

  师:今天,老师给同学们带了几位老朋友,同学们看,你们认识它们吗?(屏幕上显示:长方形、正方形、三角形、平行四边形和梯形)你们能说出它们的名称吗?

  生:逐个说出长方形、正方形、三角形、平行四边形、梯形。

  师:这些图形都是我们前面所学过的平面图形,现在你们再看这些图形,和前面那些图形一样吗?(屏幕上显示:正方体、圆柱体、圆锥体、长方体。)

  生:不一样。

  师:(指着图)像这样的图形,就是立体图形,今天,我们一块来研究立体图形中的一种图形(屏幕上显示:一个长方体)长方体。(板书课题:长方体的认识)

  二、探究新知:

  1、面的认识:

  师:根据同学们以前所学习的知识,谁能说说长方体的大概样子呢?

  生:它的大概样子是长长的,方方的。

  师:请同学们在这些图中,找出长方体(出示课件)第几个是长方体?

  生:回答。

  师:在日常生活中,你发现哪些物体是长方体?

  生甲:烟盒,牙膏盒,药盒等。

  生乙:电冰箱,收音机,微波炉等。

  生丙:砖,床,衣柜,教室等。

  师:在我们的生活中,有许许多多的物体是长方体,只要同学们仔细观察,就能发现很多很多。现在请同学们拿出自己准备的学具,跟着老师一块儿摸一摸(教师拿着长方体教具引导学生摸长方体的面)你摸到了什么?

  生:我摸到了长方体的面。

  师:它的面是怎样的?

  生:是平平的。

  师:这样平平的面到底有多少呢?请同学们注意观看屏幕(出示课件)。

  生:6个面。

  师:你们手中的学具也是6个面吗?数一数。

  生:6个面。

  师:对,这是我们对长方体的第一个发现,长方体有6个面。(板书:6个面。)这6个面到底有什么特征呢?请同学们再注意观看屏幕(逐个出示:上下两面重合,左右两面重合,前后两面重合。)

  师:现在,你看到长方体哪两个面怎么样了呢?

  生:上下两个面完全重合在了一起。

  师:说明这两个面怎么样呢?

  生:说明这两个面的形状、大小完全一样。

  师:现在哪两个面又重合在了一起?

  生:左右两个面完全重合到了一起。

  师:说明左右两个面怎么样呢?

  生:说明左右两个面大小完全一样。

  师:接下来哪两个面会重合到一起呢?请同学们猜想一下,想出来了请举手。

  生:前后两个面会重合到一起。

  师:这位同学到底猜想的对不对呢?我们一块来看大屏幕(显示:前后两个面重合。)这位同学猜想的对吗?

  生:对。

  师:通过刚才的观察,你发现长方体6个面都是什么形?

  生:6个面都是长方形。

  师:是不是所有的长方体6个面都是长方形呢?现在请同学们拿出自己的学具仔细观察一下。

  生甲:我的长方体学具6个面都是长方形。

  生乙:我的'长方体学具4个面是长方形,有两个面是正方形。

  师:一般情况下长方体6个面都是长方形,在特殊的情况下有两个面是正方形。

  师:通过刚才的观察及电脑演示,我们就可以得到长方体面的特征。(师板书:6个面都是长方形,特殊情况下有两个相对的面是正方形),相对的两个面大小相同。现在请同学们齐读长方体面的特征。

  生:齐读。

  2、棱的认识:

  师:(拿出教具边指边说)两个面相交的一条边,我们把它叫做长方体的棱。现在请同学们拿出长方体学具,用手摸一摸长方体的棱,你有什么感觉?

  生:有割手的感觉。

  师:看着棱,你发现了什么?

  生:棱把相邻的两个面分开了。

  师:长方体的棱有多少条呢?数一数你的学具。

  生:12条。

  师:(拿出长方体棱长框架,师引导学生有顺序地依次数出长方体棱长。)12条。这是我们的第二个发现,长方体有12条棱。(板书:12条棱)

  师:现在,大家一块来研究长方体的棱有什么特征呢?请同学们拿出你手中的学具,边观察边用直尺测量,思考一个问题:1、长方体12条棱按长短可以分成几组?怎样分?带着这个问题,四个人为一小组,边讨论边分。(师巡视)

  师:讨论好的小组请举手。

  生甲:我们小组把12条棱分成了三组,最长的4条分成了一组,较长的4条分成了一组,最短的4条分成了一组。每组棱长度相等。

  生乙:我们小组分成了两组:最长的4条分成一组,剩下的8条分成一组。

  (师:到底这两组同学分的对不对呢?请同学观看大屏幕,显示1:最长4条分成一组,最短4条分成一组,剩下4条分成一组。有两个面是正方形的分成。显示2:最长的4条分成一组,剩下的8条分成一组。)这两组同学分的对吗?

  生:都对。

  师:12条棱一般情况下分成3组,每组有4条棱长度相等。特殊情况下分成2组,一组有4条棱长度相等,另一组有8条棱长度相等。相等的棱是相对的,也可以说成相对的棱的长度相等。长方体的棱的特征我们就可以总结为(师边说边板书:相对的棱的长度相等。)

  3、顶点的认识:

  师:(拿出教具边说边指)三条棱相交的这一个点,我们把它叫做长方体的顶点。拿出你们的学具,摸摸长方体的顶点,有什么感觉?

  生:有扎手的感觉。

  师:这样的顶点有多少个呢?现在请同学们观看屏幕(显示:长方体的顶点)数一数,长方体有几个顶点?

  生:8个顶点。

  师:是不是所有的长方体都有8个顶点呢?拿出你们的学具数一数。

  生:8个顶点。

  师:对,第三个发现,长方体有8个顶点。(师板书:8个顶点)

  师:(出示课件)相交于一个顶点的三条棱的长度相等吗?(边说边用鼠标指三条棱)

  生:不相等。

  师:相交于一个顶点的这三条棱的长度分别叫做长方体的长、宽、高。(边说边用鼠标指长、宽、高)。

  师:习惯上,长方体的位置固定以后,(出示学具边说边用手指)我们把底面中较长的棱叫做长,较短的棱叫做宽,和底面垂直的棱叫做高。现在,请同学们看着老师的学具,老师用手指,同学们说出它的长、宽、高。(师把教具竖放、横放、侧放、让学生说出长、宽、高)

  师:实际上,长方体的长、宽、高是根据长方体所放的位置的不同而改变的。现在我们来做一些练习题。(电脑出示:练习题1)

  三、课堂巩固

  判断:(正确的在括号里面画“√”,错误的在括号里画“×”。)

  (1)长方体的六个面一定是长方形。( )

  (2)长方体有6个面,12条棱,8个顶点。( )

  八、板书设计:

  长方体的认识

  6个面都是长方形(特特殊情况有两个面是正方形)

  相对的面大小相等

  (12条)棱:相对的棱的长度相等

  (8个)顶点

五年级数学下册教案15

  第一课时

  教学内容:教科书第88~89页,例1、例2、练一练,练习十六第1~2题。

  教学目标:1、使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推向”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学过程:

  一、教学新课

  1、教学例1。

  (1)出示例1。如果把甲杯中的40毫升果汁倒入乙杯,这两杯果汁的数量分别会发生怎样的变化?进行操作演示。回顾操作过程,出示完整示意图。

  (2)解决实际问题。把甲杯中的40毫升果汁倒入乙杯后,两个杯子的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?知道了现在每个杯子中的果汁数量,可以怎样求原来两个杯子中的果汁数量?可以用怎样的方法来解决?小组讨论。

  (3)汇报方法。如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

  (4)。看来“再倒回去”是个好办法,用这个方法我们很容易就能想到原来两个杯子里各有多少毫升果汁。回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程把课本上的表格填写完整吗?边填边说每个数据各是怎样推算出来的。在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么优点?板书课题:解决问题的策略。

  2、教学例2。

  (1)理解题意,提出问题。用什么方法可以将题目的意思更清楚的表达出来?

  (2)解决问题。

  指出:可以按题意摘录条件进行。出示示意图。你能根据示意图说说题目的大意吗?你准备用什么策略来解决?你能仿照示意图的样四,表示出“倒过来推想”的过程吗?尝试画倒推的示意图。展示作业。根据示意图写出倒推后每一步的结果。你能列式解答吗?说说自己的想法。怎样才能知道我们推算出的结果是否正确呢?怎样验算?

  (3)归纳。

  解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的.问题有什么特点?

  3、完成练一练。

  理解题意。尝试将题目中的条件,展示学生作业。你是怎样想的?你打算用什么样的策略角度解决这个问题?“拿出画片的一半还多1张送给小明”是什么意思?你能换种手法表示这样的意思吗?回列式解答吗?说说推想的过程。

  二、巩固练习

  1、完成练习十六第1题。

  你能通过列表的方法题目中的信息吗?你会列式解答吗?说说你是怎么想的?

  2、完成第2题。

  你能画图题目中各个条件的示意图吗?学生根据示意图列式解答。交流汇报,说说是怎样想的?

  三、课堂

  这节课你学会了什么?你有哪些收获和体会?

  第二课时

  教学内容:教科书第90~91页,练习十六第3~8题。

  教学目标:1、通过练习,使学生进一步掌握用“倒过来推想”的策略解决问题的思路,感受所学解决问题策略的实际应用价值。

  2、使学生在解决问题的过程中,进一步发展分析、综合和简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得成功体验。

  教学过程:

  一、引入上节课

  我们学习了什么内容?在解决问题时,可以应

  用什么策略?板书课题:用“逆推法”的策略解决问题。

  二、综合练习

  1、完成练习十六第3题。

  你能把题中的条件进行吗?可以运用什么策略解决呢?你能在图中标出其他几个景点和大门的位置吗?展示作业,说说自己的思路。

  2、完成第4题。学生独立完成。汇报交流方法,你是怎样解决的?应该怎样倒过来想呢?

  3、完成第5题。学生独立完成。汇报交流方法,说说你是怎么想的?怎样检验所填的数据是否正确?

  4、完成第6题。读题,理解题意。下午6时的气温是18℃,根据比中午下降了7℃,你能推算出中午12时的气温吗?你是怎样推算上午8时是多少℃的?

  5、完成第7题。理解每幅图中显示的相等关系:5个桃子的重量=2个梨子的重量3个梨子的重量=1个菠萝的重量1个菠萝重600克小组中交流思路。说说是怎样想的?

  6、完成第8题。你能根据题中的条件进行吗?根据的条件列式解答。应该怎样倒过来推想呢?

  三、课堂

  通过今天的练习,你有什么收获?在生活中,在解决很多实际问题时,都可以运用“倒过来推想”的策略解决。

  第三课时

  教学内容:教科书第92页,练习十六第9、10题、思考题。

  教学目标:1、使学生进一步掌握“倒过来推想”的策略解决实际问题,感受所学解决问题策略的实际应用价值。

  2、使学生在解决问题的过程中,进一步发展分析、综合简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得成功体验。

  教学过程:

  一、揭示课题板书课题:用“逆推法”的策略解决问题。

  二、综合练习

  1、完成练习十六第9题。

  理解对帐单每一栏的含义。4月份的结单余额和上月比,是多了还是少了?你是怎么知道的?怎样可以算出张阿姨信用卡3月份的结单余额是多少元?小组讨论方法。汇报交流想法。

  2、完成练习十六第10题。

  要知道这四张牌原来是怎么放的,可以运用什么样的策略?(逆推法)根据第四幅图,你能知道第三幅图中的牌是什么顺序吗?(10、9、7、8)原来的牌是什么顺序呢?(7、9、10、8)分组活动:拿出四张牌,任意交换两次位置,再翻开看结果,猜猜原来四张牌是怎样放的。小组活动。

  3、完成思考题。

  理解题意及关键词的意思。“遇店加1倍”,遇到店将加成壶中酒的2倍。你能根据题意画出示意图吗?原有?斗→加1倍→喝1斗→加1倍→喝1斗→加1倍→喝1斗(喝完)逆推为:0→1斗→0.5斗→1.5斗→0.75斗→1.75斗→1.75斗→0.875斗

  三、课堂

  你觉得“逆推法”对于解决生活中的实际问题有什么作用?