
- 二次根式教案 推荐度:
- 相关推荐
二次根式教案集合九篇
作为一位杰出的老师,就有可能用到教案,教案有助于学生理解并掌握系统的知识。我们应该怎么写教案呢?下面是小编为大家整理的二次根式教案9篇,欢迎大家分享。
二次根式教案 篇1
【教学目标】
1.运用法则
进行二次根式的乘除运算;
2.会用公式
化简二次根式。
【教学重点】
运用
进行化简或计算
【教学难点】
经历二次根式的乘除法则的探究过程
【教学过程】
一、情境创设:
1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?
2.计算:
二、探索活动:
1.学生计算;
2.观察上式及其运算结果,看看其中有什么规律?
3.概括:
得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。
将上面的公式逆向运用可得:
积的算术平方根,等于积中各因式的算术平方根的.积。
三、例题讲解:
1.计算:
2.化简:
小结:如何化简二次根式?
1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;
2.P62结果中,被开方数应不含能开得尽方的因数或因式。
四、课堂练习:
(一).P62 练习1、2
其中2中(5)
注意:
不是积的形式,要因数分解为36×16=242.
(二).P67 3 计算 (2)(4)
补充练习:
1.(x>0,y>0)
2.拓展与提高:
化简:1).(a>0,b>0)
2).(y
2.若,求m的取值范围。
☆3.已知:,求的值。
五、本课小结与作业:
小结:二次根式的乘法法则
作业:
1).课课练P9-10
2).补充习题
二次根式教案 篇2
教学目的
1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;
2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1.把下列各根式化简,并说出化简的根据:
2.引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
3.启发学生回答:
二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?
二、讲解新课
1.总结学生回答的内容后,给出最简二次根式定义:
满足下列两个条件的二次根式叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽的因数或因式。
最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的'指数小于2;特别注意被开方数应化为因式连乘积的形式。
2.练习:
下列各根式是否为最简二次根式,不是最简二次根式的说明原因:
3.例题:
例1 把下列各式化成最简二次根式:
例2 把下列各式化成最简二次根式:
4.总结
把二次根式化成最简二次根式的根据是什么?应用了什么方法?
当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。
三、巩固练习
1.把下列各式化成最简二次根式:
2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。
四、小结
本节课学习了最简二次根式的定义及化简二次根式的方法。同学们掌握用最简二次根式的定义判断一个根式是否为最简二次根式,要根据积的算术平方根和商的算术平方根的性质把一个根式化成最简二次根式,特别注意当被开方数为多项式时要进行因式分解,被开方数为两个分数的和则要先通分,再化简。
五、布置作业
下列各式化成最简二次根式:
二次根式教案 篇3
活动1、提出问题
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?
问题:10+20是什么运算?
活动2、探究活动
下列3个小题怎样计算?
问题:1)-还能继续往下合并吗?
2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。
活动3
练习1指出下列每组的`二次根式中,哪些是可以合并的二次根式?(字母均为正数)
创设问题情景,引起学生思考。
学生回答:这个运动场要准备(10+20)平方米的草皮。
教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。
我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。
教师引导验证:
①设=,类比合并同类项或面积法;
②学生思考,得出先化简,再合并的解题思路
③先化简,再合并
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。
教师巡视、指导,学生完成、交流,师生评价。
提醒学生注意先化简成最简二次根式后再判断。
二次根式教案 篇4
【1】二次根式的加减教案
教材分析:
本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。
学生分析:
本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。
设计理念:
新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。
教学目标知识与技能目标:
会化简二次根式,了解同类二次根式的`概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。
过程与方法目标:
通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。
情感态度与价值观:
通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.
重点、难点:重点:
合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。
难点:
二次根式加减法的实际应用。
关键问题 :
了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。
教学方法:.
1. 引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。
2. 类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。
3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。
【2】二次根式的加减教案
教学目标:
1.知识目标:二次根式的加减法运算
2.能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。
3.情感态度:培养学生善于思考,一丝不苟的科学精神。
重难点分析:
重点:能熟练进行二次根式的加减运算。
难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。
教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。
运用教具:小黑板等。
教学过程:
问题与情景 | 师生活动 | 设计目的 |
活动一: 情景引入,导学展示 1.把下列二次根式化为最简二次根式: , ; , , 。上述两组二次根式,有什么特点? 2.现有一块长7.5dm、宽5dm的木板,能否采用如教科书图21.3-所示的方式,在这块木板上截出两个面积分别是8dm 和18dm 的正方形木板? | 这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。 教师倾听学生的`交流,指导学生探究。 问:什么样的二次根式能进行加减运算,运算到那一步为止。 由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。 | 加强新旧知识的联系。通过观察,初步认识同类二次根式。 引出二次根式加减法则。 |
3. A、B层同学自主学习15页例1、例2、例3,C层同学至少完成例1、例2的学习。 例1.计算: (1) ; (2) - ; 例2. 计算: 1) 2) 例3.要焊接一个如教科书图21.3—2所示的钢架,大约需要多少米钢材(精确到0.1米)? 活动二:分层练习,合作互助 1.下列计算是否正确?为什么? (1) (2) ; (3) 。 2.计算: (1) ; (2) (3) (4) 3.(见课本16页) 补充: 活动三:分层检测,反馈小结 教材17页习题: A层、 B层:2、3. C层1、2. 小结: 这节课你学到了什么知识?你有什么收获? 作业:课堂练习册第5、6页。 | 自学的同时抽查部分同学在黑板上板书计算过程。抽2名C层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名B层同学订正。抽2名B层同学在黑板上完成例2板书过程,若出现错误,再抽2名A层同学订正。抽1名A层同学在黑板上完成例3板书过程,并做适当的分析讲解。 此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1 m, 学生考虑问题要全面,不能漏掉任何一段钢材。 老师提示: 1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。 A层同学完成16页练习1、2、3;B层同学完成练习1、2,可选做第3题;C层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名C层同学口答练习1;抽4名B层或C层同学在黑板上板书练习第2题;抽1名A层或B层同学在黑板上板书练习第3题后再分析讲解。 点拨:1)对 的化简是否正确;2)当根式中出现小数、分数、字母时,是否能正确处理; 3)运算法则的运用是否正确 先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。 小结时教师要关注: 1)学生是否抓住本课的重点; 2)对于常见错误的认识。 | 把学习目标由高到低分为A、B、C三个层次,教学中做到分层要求。 学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。 将二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。 小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。 培养学生的计算的准确性,以培养学生科学的精神。 对课堂的问题及时反馈,使学生熟练掌握新知识。 每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。 |
二次根式教案 篇5
一、教学目标
1.理解分母有理化与除法的关系.
2.掌握二次根式的分母有理化.
3.通过二次根式的分母有理化,培养学生的运算能力.
4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想
二、教学设计
小结、归纳、提高
三、重点、难点解决办法
1.教学重点:分母有理化.
2.教学难点:分母有理化的技巧.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习小结,归纳整理,应用提高,以学生活动为主
七、教学过程
【复习提问】
二次根式混合运算的步骤、运算顺序、互为有理化因式.
例1 说出下列算式的运算步骤和顺序:
(1) (先乘除,后加减).
(2) (有括号,先去括号;不宜先进行括号内的运算).
(3)辨别有理化因式:
有理化因式: 与 , 与 , 与 …
不是有理化因式: 与 , 与 …
化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).
例如:等式子的`化简,如果分母是两个二次根式的和,应该怎样化简?
引入新课题.
【引入新课】
化简式子 ,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以 的有理化因式,而这个式子就是 ,从而可将式子化简.
例2 把下列各式的分母有理化:
(1) ; (2) ; (3)
解:略.
注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.
二次根式教案 篇6
1.请同学们回忆(≥0,b≥0)是如何得到的?
2.学生观察下面的例子,并计算:
由学生总结上面两个式的关系得:
类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:
(≥0,b0)
使学生回忆起二次根式乘法的运算方法的推导过程.
类似地,请每个同学再举一个例子,
请学生们思考为什么b的取值范围变小了?
与学生一起写清解题过程,提醒他们被开方式一定要开尽.
对比二次根式的乘法推导出除法的运算方法
增强学生的自信心,并从一开始就使他们参与到推导过程中来.
对学生进一步强化被开方数的取值范围,以及分母不能为零.
强化学生的解题格式一定要标准.
教学过程设计
问题与情境师生行为设计意图
活动二自我检测
活动三挑战逆向思维
把反过来,就得到
(≥0,b0)
利用它就可以进行二次根式的化简.
例2化简:
(1)
(2)(b≥0).
解:(1)(2)练习2化简:
(1)(2)活动四谈谈你的收获
1.商的算术平方根的性质(注意公式成立的条件).
2.会利用商的算术平方根的性质进行简单的二次根式的化简.
找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.
二次根式的乘法公式可以逆用,那除法公式可以逆用吗?
找学生口述解题过程,教师将过程写在黑板上.
请学生仿照例题自己解决这两道小题,组长检查本组的.学习情况.
请学生自己谈收获,并总结本节课的主要内容.
为了更快地发现学生的错误之处,以便纠正.
此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.
让学困生在自己做题时有一个参照.
充分发挥组长的作用,尽可能在课堂上将问题解决.
二次根式教案 篇7
一、教学目标
1.了解二次根式的意义;
2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3. 掌握二次根式的性质 和 ,并能灵活应用;
4.通过二次根式的计算培养学生的逻辑思维能力;
5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.
二、教学重点和难点
重点:(1)二次根的意义;(2)二次根式中字母的取值范围.
难点:确定二次根式中字母的取值范围.
三、教学方法
启发式、讲练结合.
四、教学过程
(一)复习提问
1.什么叫平方根、算术平方根?
2.说出下列各式的意义,并计算:
通过练习使学生进一步理解平方根、算术平方根的概念.
观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,
表示的是算术平方根.
(二)引入新课
我们已遇到的这样的式子是我们这节课研究的内容,引出:
新课:二次根式
定义: 式子 叫做二次根式.
对于 请同学们讨论论应注意的.问题,引导学生总结:
(1)式子 只有在条件a0时才叫二次根式, 是二次根式吗? 呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.
(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的外在形态.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.
例1 当a为实数时,下列各式中哪些是二次根式?
分析: , , , 、 、 、 四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0
例2 x是怎样的实数时,式子 在实数范围有意义?
解:略.
说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.
例3 当字母取何值时,下列各式为二次根式:
(1) (2) (3) (4)
分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.
解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时, 是二次根式.
(2)-3x0,x0,即x0时, 是二次根式.
(3) ,且x0,x0,当x0时, 是二次根式.
(4) ,即 ,故x-20且x-20, x2.当x2时, 是二次根式.
例4 下列各式是二次根式,求式子中的字母所满足的条件:
(1) ; (2) ; (3) ; (4)
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.
解:(1)由2a+30,得 .
(2)由 ,得3a-10,解得 .
(3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.
(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.
(三)小结(引导学生做出本节课学习内容小结)
1.式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.
2.式子中,被开方数(式)必须大于等于零.
(四)练习和作业
练习:
1.判断下列各式是否是二次根式
分析:(2) 中, , 是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.
2.a是怎样的实数时,下列各式在实数范围内有意义?
五、作业
教材P.172习题11.1;A组1;B组1.
六、板书设计
二次根式教案 篇8
1.教学目标
(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;
(2)会用公式化简二次根式.
2.目标解析
(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;
(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.
教学问题诊断分析
本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.
在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.
本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.
教学过程设计
1.复习引入,探究新知
我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.
问题1 什么叫二次根式?二次根式有哪些性质?
师生活动 学生回答。
【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.
问题2 教材第6页“探究”栏目,计算结果如何?有何规律?
师生活动 学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.
【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.
2.观察比较,理解法则
问题3 简单的根式运算.
师生活动 学生动手操作,教师检验.
问题4 二次根式的乘除成立的条件是什么?等式反过来有什么价值?
师生活动 学生回答,给出正确答案后,教师给出积的算术平方根的性质.
【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.
3.例题示范,学会应用
例1 化简:(1)二次根式的乘除; (2)二次根式的乘除.
师生活动 提问:你是怎么理解例(1)的?
如果学生回答不完善,再追问:这个问题中,就直接将结果算成二次根式的乘除可以吗?你认为本题怎样才达到了化简的效果?
师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质二次根式的乘除将其移出根号外.
再提问:你能仿照第(1)题的解答,能自己解决(2)吗?
【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.
例2 计算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除
师生活动 学生计算,教师检验.
(1)在被开方数相乘的`时候,就可以考虑因数或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先写成二次根式的乘除再分解;
(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;
(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到二次根式的乘除,然后利用二次根式的乘法法则,变成二次根式的乘除,由于二次根式的乘除可以判断二次根式的乘除,因此直接将x移出根号外.
【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.
教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.
4.巩固概念,学以致用
练习:教科书第7页练习第1题. 第10页习题16.2第1题.
【设计意图】巩固性练习,同时检验乘法法则的掌握情况.
5.归纳小结,反思提高
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)你能说明二次根式的乘法法则是如何得出的吗?
(2)你能说明乘法法则逆用的意义吗?
(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?
6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.
五、目标检测设计
1.下列各式中,一定能成立的是( )
A.二次根式的乘除 B.二次根式的乘除
C.二次根式的乘除 D.二次根式的乘除
【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.
2.化简二次根式的乘除 ______________________________。
【设计意图】二次根式是特殊的实数,实数的相关运算法则也适用于二次根式.
3.已知二次根式的乘除,化简二次根式二次根式的乘除的结果是( )
A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除
【设计意图】巩固二次根式的性质,利用积的算术平方根的性质正确化简二次根式.
二次根式教案 篇9
一、复习引入
学生活动:请同学们完成下列各题:
1.计算
(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
二、探索新知
如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.
整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的'运算规律也适用于二次根式.
例1.计算:
(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.
解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算
(1)(+6)(3-)(2)(+)(-)
分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.
解:(1)(+6)(3-)
=3-()2+18-6=13-3(2)(+)(-)=()2-()2
=10-7=3
三、巩固练习
课本P20练习1、2.
四、应用拓展
例3.已知=2-,其中a、b是实数,且a+b≠0,
化简+,并求值.
分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?
【二次根式教案】相关文章:
二次根式教案05-22
二次根式优秀教案03-14
二次根式教案[热]07-10
二次根式的加减教案01-19
二次根式教案优秀06-26
二次根式教案15篇02-27
二次根式教案优秀(热门)12-19
二次根式教案汇总6篇05-07
关于二次根式教案五篇05-08
【推荐】二次根式教案4篇05-09