
小学数学教案10篇[精选]
作为一位不辞辛劳的人民教师,编写教案是必不可少的,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么教案应该怎么写才合适呢?下面是小编精心整理的小学数学教案10篇,仅供参考,大家一起来看看吧。
小学数学教案 篇1
教学内容
两点之间的连线,线段最短。(教材35页—36页)
教学目标
知识目标:体会两点间所有连线中线段最短,知道两点间的距离。
能力目标:在创设的课堂活动中,引导学生主动获取知识,培养由具体到抽象的思维能力,提高学生观察问题和解决问题的能力。
情感目标:在解决问题的过程中,感受到成功的'喜悦,激发学生的学习兴趣。
教学重点、难点
两点之间的连线,线段最短。
教学媒体
视频、课件、图片。
教学过程
一、问题导入
出示图片《看图讲故事》。
师:同学们,你们知道小狗为什么会跑到小主人的前面吗?
学生讨论、汇报。
二、学习新知
1.数学活动
在纸上任意点两点,用线联接它们,量一下它们的长短,比较一下谁最短?
教师提出问题,学生独立思考,小组交流后回答。
2.想一想
出示图片《看图回答问题》
(1)小明家到学校有几条路?
(2)你估计小明到学校走哪条路?为什么?
指明几个学生回答图中的问题,并说明他们的理由。
3.量一量
学生独立完成36页的“量一量,从A到B的三条线中,哪条线最短”。
学生汇报结果。
4.看一看
观看视频《公理(线段最短)》。
师生共同出结论:两点之间的连线,线段最短。
教师提出距离的概念:两点之间线段的长度,叫做两点间的距离。
5.做一做
问题1.河道长度
如图《河道长度》,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?
问题2.九曲桥
如图《九曲桥》,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座笔直的桥相比,这样做是否增加了游人在桥上行走的路程?说出其中的道理。
6.教师鼓励学生试着举出类似的例子。师生共同讨论。
三、
两点之间的连线,线段最短。
四、巩固练习
教材36页“练一练”
小学数学教案 篇2
一、主要教学内容
㈠数与代数
1、第一单元“小数除法”。本单元包括小数除法,积商近似值,循环小数、小数四则混合运算等内容。结合具体情景,经历探索小数除法计算方法的过程,初步体验转化的数学思想。了解在生活中有时只需要求积商的近似值,掌握求近似值的方法,培养估算意识。初步了解循环小数,运用小数四则运算解决日常生活中的简单问题。
2、第三单元“倍数与因数”
本单元是在学生学过整数的认识、整数的四则计算等知识的基础上学习的,学习的主要内容有:认识自然数,倍数与找倍数,2、5、3倍数的特征,因数与找因数;质数与合数,奇数与偶数等知识。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。本单元的具体学习内容安排了六个情境活动:在“数的世界”活动中,主要是认识倍数和因数;在“探索活动(一)——2、5的倍数的特征”中,学生将经历探索2、5倍数特征的过程,理解2、5倍数的特征,知道奇数、偶数的含义;在“探索活动(二)——3的倍数的特征”中,学生将经历探索3的倍数的特征的过程,理解3的倍数的特征;在“找因数”活动中,利用直观的拼图游戏,让学生体会、掌握找因数的直观方法;在“找质数”活动中,引导学生经历用“筛法”制作质数表的过程,理解质数和合数的意义,并在活动在过程中,让学生了解一些数学史,丰富对数学发展的认识,感受数学文化的魅力;在“数的奇偶性”活动中,尝试运用“列表”、“画示意图”等解法问题策略发现规律,运用数的奇偶性解决一些简单问题。通过本单元的学习,学生将经历探索数的有关特征的活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数以及知道质数、合数;将经历2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步合情推理的能力;在探索数的特征的过程中,体会观察、分析归纳或猜想验证等探索方法,在数学活动中体验数学问题的探索性和挑战性。
3、第五单元“分数”
在学习本单元内容前,学生已初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母分数加减法,以及能初步运用分数表示一些事物、解决一些简单的实际问题。本单元在此基础上引导学生进一步理解分数的意义,学习分数的再认识、分数与除法的关系、真分数、假分数、分数大小变化规律、公约数、约分、公倍数、通分、分数的大小比较等知识。这些知识的学习是进一步学习分数四则计算、运用分数知识解决实际问题的基础,是分数教学的重点。本单元的具体学习内容安排了九个活动情境:在“分数的再认识”活动中,通过具体的情境,进一步理解分数的意义,体会“整体”与“部分”的关系,了解一个分数对应的“整体”不同,则所表示的具体数量也不同;在“分饼”与“分数与除法”两个活动中,学生将知道分数的分类标准,并能掌握带分数与假分数的.相互转化的方法;在“找规律”的活动中,经历探索分数大小不变规律的过程,理解分数的基本性质,并能根据分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数;在“找最大公因数”与“约分”两个活动中,学生将认识公因数与最大公因数、并能运用这些知识进行正确地约分,也为后续理解、掌握通分的方法打下了基础;在“去少年宫”与“分数的大小”两个活动中,学生将认识公倍数与最小公倍数,并能运用这一知识,会正确地通分与比较分数的大小。通过本单元的学习,学生将进一步理解分数的意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。
㈡空间与图形
1、第二单元“轴对称和平移”
结合实例,感知平移轴对称现象;能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形;通过观察、操作,认识轴对称图形,并能在方格纸上画出简单图形的轴对称图形。
2、第四单元“多边形的面积”
本单元学习的内容主要有:平面图形面积大小的比较方法、平行四边形面积的计算方法、三角形面积计算的方法以及梯形面积计算的方法等。
2、第六单元“组合图形的面积”
本单元的主要内容有:组合图形面积的计算与生活中各种不规则图形面积的
估计与计算。在第二单元中,学生已经学习了平行四边形、三角形与梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,这也是提高学生综合能力的重要平台。
本单元的具体学习内容安排了两个情境活动:在“组合图形的面积”中,重点介绍组合图形的形成以及计算组合图形的分割方法;在“探索活动——成长的脚印”中,主要学习不规则图形面积的估计与计算。通过这些内容的安排,让学生形成解答组合图形的基本能力。
㈢统计与概率
第六单元“可能性”
本单元学习的主要内容有:用分数表示可能性的大小与运用分数表示可能性大小的知识设计日常生活中的方案。在二年级时,学生已经学习了客观事件出现的可能性的,在三年级时,他们学习了客观事件出现可能性的大小,认识到可能性大小的出现是与相关的条件有密切的关系,在四年级时,教材安排游戏公平的活动,让学生认识等可能性。
本册教材安排的综合应用内容将进一步整合数与代数、空间与图形、统计三个领域的内容,并进一步加强课堂数学知识与现实生活中的实际问题的结合,以提高学生综合实践的能力。本册教材安排了三个集中性的专题综合应用内容:在“数学与交通”的专题综合应用活动中,安排了“相遇”、“旅游费用”以及“看图找关系”三个小专题的内容,通过这些活动,以提高学生解决问题的策略思想;在“尝试与猜测”的专题综合应用活动中,安排了“鸡兔同笼”与“点阵中的规律”的两个小专题,通过这两个活动,引导学生关注与思考一些日常生活中的现象,从中能发现一些特殊的规律。通过对生活中一些现象分析与解决,让学生进一步体会数学与日常生活的密切联系。二、课时安排:(见附表)
第一单元:小数除法
教学目的要求
1.通过具体情境,进一步理解除法的意义,探索并掌握小数除以整数的计算方法。
2.通过“打电话”的情境,利用已有知识,经历探索除数是小数的除法计算方法的过程,体会转化的数学思想。
3.通过人民币和外币的兑换活动,掌握求积、商近似值的方法,能够按要求求出积、商的近似值。
4.通过计算蜘蛛和蜗牛每分爬行多少米,发现余数和商的特点,知道什么是循环小数,并会用四舍五入法对循环小数取近似值。
重点与难点说明
小数的除法,分为三种情形分别进行探索:一是小数除以整数,二是整数除以整数;三是小数或整数除以小数。
小数除以整数的情形,结合实例,探索并理解可以把被除数当成整数,变成整数的除法求得商后,只要商的小数点与被除数的小数点对齐就可以了。
整数除以整数的情形,在以往学过的整数的除法中,只能求得整数的商及余数。但在小数的除法中,整数的余数可以化为更小的单位(小数单位),因此可以继续平均分(做除法),得到的商是小数。所以,今后遇到整数除以整数的情形,可以把被除数(整数)的末尾添上小数点,在这个小数点后面可以添上所需要的“0”。这样,整数除以整数的情形又转化为上述小数除以整数的情形了。
除数是小数的情形,应用商不变规律,根据把除数变成整数的需要,把被除数和除数扩大相同的倍数,就把除数是小数的除法转化成上述除数是整数的除法了。
在实际应用中,对于复杂的小数的乘法或除法运算,可以用计算器进行计算,并且会根据要求,取积或商的近似值。
认识循环小数,结合竖式除法的过程,体会出现了什么情况,不用再除下去,就能知道商一定是循环小数。
第三单元目标:
小学数学教案 篇3
教学目标:
1、通过总复习,使学生对“时、分、秒”和“千米和吨”的知识加以巩固,提高计算和估算能力,以及运用所学的数学知识解决实际问题的能力。
2、提高学生学习数学的兴趣,建立学好数学的信心。
教学重点:让学生建立时、分、秒的时间观念,毫米、分米、千米的长度观念,克千克和吨的质量观念,知道各单位之间的进率。
教学难点:进行各单位之间的简单计算和估算。
教学过程
一、归纳整理,相互交流
1、谈话引导
同学们,到现在为止,数学中我们已经学了几组表示事物及其特征的特定单位。你们知道有哪些单位吗?
如:表示时间的单位有哪些?还有表示什么的单位?
2、小组讨论
由小组长把讨论的结果记录下来。
3、交流展示
并评出哪一组记录的最完整。
二、加深体验,建立观念
1、数一数
出示时间单位时、分、秒。讨论:怎样才能感受和记忆这些时间单位?
让学生从钟面的认识,1时、1分、1秒内所干的事情,以及时、分、秒之间的进率等方面复习时间知识。
2、比一比
出示长度单位:毫米、分米、米和千米
小组讨论:怎样感受和记忆这些长度单位?
让学生通过用手比划,以及用语言描述,全面复习所学的长度单位及其进率,把前后知识联系起来,使知识系统化。
3、估一估
出示质量单位:克、千克和吨
小组讨论:怎样感受和记忆这些质量单位?
让学生通过掂一掂,估一估全面复习所学的质量单位及其进率。
三 、联系生活,实际应用
1、算一算
出示课本第122页的第9题,让学生说一说题意,再独立解答。最后交流自己的算法。
2、 猜一猜
结合课本第10页的'第4题,让学生根据路程的远近,猜一猜他们是步行、乘车还是乘飞机?
3、 估一估
通过第125的第8题,使学生掌握千克与吨之间的计算与估算。
四、巩固练习:
独立完成课本第122页的第10题,集体核对。
五、总结评价:
同学们,这节课我们复习了哪些知识?你掌握的怎么样?还有什么困难?
小学数学教案 篇4
教学内容:
教材第2页例1、例2、例3,做一做及练习一第1-3题。
教学目标:
1.在熟悉的生活情境中初步认识负数,理解负数的意义,能正确的读写正数和负数,知道0既不是正数也不是负数。会用负数灵活地表示一些实际问题,能比较熟练地在数轴上找到正数、0和负数所对应的点。
2.借助熟悉的生活情境经历负数产生的过程,体会负数的意义。具有数形结合的意识,深刻体会数轴形成的过程。
3.激发学生对数的认识的兴趣,感受负数与生活的密切联系。
教学重点:
理解负数的意义,会用正数、负数表示生活中的.相反的量。
教学难点:
理解相反意义的量和对0的认识。
教学准备:
课件
教学过程:
一、认识负数
(1)情境激疑
同学们,刚才一上课大家就做了一组相反的动作,想想看,是什么?
今天这节课咱们就从“相反”这个话题开始聊起:在咱们的生活中有很多的相反现象,比如太阳每天东升西落、车站上人们上车下车……
你能再举几个这样的例子吗?
顺着这位同学的思路继续往下聊,走进数学你又有什么发现?
1. 今年开学,四年级转入15名同学,五年级转出15名同学。
2.在剪刀、锤子、布活动中,男同学赢了3次,女同学输了1次。
3.李叔叔做生意,三月份亏了3000元,四月份赚了8000元。
怎样用数学的形式来表示这些意义相反的量呢?出示。
要求:简洁,是让别人也能一目了然。
汇报,可能有以下情况。
①直接表示 ( 简洁但不明了)
②用文字表示 (明了又不够简洁)
③用符号表示(简明、清楚,一目了然)
小结:现在人们就是用这种形式来区分意义相反的量的。
(2)认识正、负数。
你知道像这样的数,叫什么数吗?
举个例子来说?+3你会读吗?
像(—2)这样的数呢?
怎么读呢
师介绍:加号在这里叫做正号,减号叫
做负号。正数和负数表示意义相反的量。
练习:读出下面的数
-100、+6.8、-1.8、36
为了简便,+36可以写为36。也就是说通常情况下正号都可以省略。师板书。
得出:正数有无数个,负数也有无数个,用……来表示。
二、丰富新知,介绍负数历史。
同学们,我们今天从“相反”这个词聊起认识了负数这个新朋友。其实对于负数的认识,在咱们中国有着悠久的历史。古代的人,遇到这样问题的时候,也想出了不同的方法。你想知道吗?(课件演示或学习第4页你知道吗?)
听完介绍后你有什么感受?
接下来再让我们回到生活中,找一找在咱们身边又有哪些负数?(板书课题:负数)
三、生活中的应用
1.在温度计上认识负数
我的一位朋友喜爱出门旅游,这是他所定的几个备选城市,我帮他留意了一下气温情况,一起来看一下
(1)(多媒体播放城市天气预报:哈尔滨-15--3℃,北京-5-5℃;上海0-8℃;海口12-20℃)
得出:0℃的作用十分重要,它正好是零上温度和零下温度的分界点,换句话说也就是正数和负数的分界点,所以它既不是正数也不是负数。
(板书0,并用集合圈将正数、负数、0进行分类)
那你知道0度是怎么来的吗?
介绍:瑞典天文学家摄尔秋思,他把自然状态下的水刚开始结冰时的温度,规定为0℃。
(2)温度计。
生活中用什么工具来测量温度吗?(课件示:生活中常用的温度计)
介绍:摄氏度、华氏度,每格代表1℃。
2.电梯里的负数
叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?(5、-2)
5和-2是以什么为分界点的呢?
3.海拔高度中的负数
世界峰珠穆朗玛峰比海平面高出8844.43米。如果把这个高度表示为+8844.43米,那么比海平面低155米的新疆吐鲁番盆地的高度应表示为( )米,海平面的高度为( )米。
练习
如果大雁向南飞30米记作+30,那么向北飞50米记作( )。
如果体重增加4千克用+4表示,那么-1.5表示( )。
4.数轴上的负数
出示例3
你能在一条直线上表示出他们运动后的情况吗?(强调以谁为分界点,以什么方向为正。两种说法)
指出:在一条直线上,确定了0(原点)、正方向和单位长度,就形成了一条数轴,刚才大家所说的就是数轴的形成过程。
现在你能在数轴上找到他们运动后的位置吗?
完成练习
(2)如果小华的位置是+11米说明她是向( )行( )米。(指出+11的位置,体会数轴是无限长的。)
(3)如果小刚先向东行5米,又向西行8米,这时小刚的位置为( )米。
(分层拓展)
5.运动场上的负数
刘翔在第十届世界田径锦标赛半决赛中110米栏的成绩是13秒42,当时赛场的风速是每秒-0.4米,你知道风速每秒-0.4米的意思吗?
四、小结
今天我们一起认识了负数,了解负数在生活中的一些作用,其实在我们的生活中负数还有更加广泛的用途等待着大家继续去了解。
小学数学教案 篇5
教学目标:
1、结合具体实例,使学生初步认识几分之一,并能结合直观图形,初步学会比较几分之一的大小。
2、通过开展丰富的数学活动,使学生获得对“平均分”及分子、分母含义的充分感知和体验,为进一步认识分数积累感性经验。
3、体会分数来自生活实际需要,感受数学与生活的联系,激发学生对数学学习的兴趣。
教学过程:
一、导入
1、谈话,出示场景图,引导学生观察场景图中的各种食品。
2、引导学生把场景图中的各种食品平均分。
(1)把4个苹果平均分成2份,每份是多少个?
(2)把2瓶矿泉水平均分成2份,每份是多少瓶?
(3)把一个蛋糕平均分成2份,每份是多少?
二、展开
(一)认识1/2
1、讨论:把一个蛋糕平均分成两份,应该怎样分?
2、思考:把一个蛋糕平均分成了两份,这一份就是这个蛋糕的一半,它就可以用哪个数来表示呢?
3、介绍“二分之一”的写法。
4、讨论:右面的这一份能不能用1/2来表示?为什么?
5、得出结论:把一个蛋糕平均分成了两份,每份都是它的1/2。
6、拓展:你还能把什么物体平均分,表示出它的1/2?
(1)请学生从老师课前提供的学具中任选一种,分一分,表示出它的1/2。
(2)自己想一个物品,说一说怎样可以得到它的1/2。
(二)认识几分之一
1、启发:刚才,我们一起把一个物体平均分成了2份,其中的一份就是它的1/2,请大家想一想,如果把那一个物体平均分成一个物体平均分成了3份、4份、5份,……又应该怎样用分数来表示呢?(课件出示“想想做做”第一题的.四幅图。)
2、小组里议一议:每个图形是怎样分的?涂色部分应该是它的几分之几?
3、全班交流,注意引导学生完整地叙述。
5、拓展:请学生自选一样物品,表示出它的几分之一。
6、辨析:有几个小朋友是这样表示1/4的,对不对?为什么?(课件出示“想想做做”第二题的四幅图,让学生看图议一议,再作出判断并说明道理。)
(三)介绍分数各部分的名称。
1、观察比较:刚才我们一起认识了1/2、1/3、1/6、1/8、……,它们都是分数。观察这些数,它们都由几部分组成?
2、结合具体的例子介绍分数各部分的名称。
3、让学生举例说一说。
(四)比较几分之一的大小
1、猜一猜:有两块同样大的月饼(课件出示两个圆),小明吃了其中一块的1/2,小丽吃了另一块的1/4,谁吃的多?(
2、交流猜的结果,借助图形验证猜测。
3、继续猜一猜:有三块同样的巧克力,三个小朋友分别吃了一块巧克力的一部分,大约是这块巧克力的几分之一?
4、比一比:谁吃得最多?谁吃得最少?从中你发现了什么?
三、应用
1、介绍生活中的分数:今天我们学习了分数,其实在我们的生活中有很多东西都与分数有关。
2、观察黑板报(“想想做做”第六题中的图):说说这些栏目分别大约是这块黑板的几分之一?
3、向课外延伸:只要大家在日常生活做一个用心的人,善于用数学的眼光去观察我们周围的世界,你一定还会发现更多的分数!
小学数学教案 篇6
本单元把小数加法和减法合在一起教学,先教学笔算的方法,在掌握笔算的基础上,口算比较容易的小数加、减法。然后教学加法运算律和减法运算性质在小数加、减法里仍然适用,并进行有关的简便计算。教材在编写方面,有以下几个主要特点。
第一,不以既定的计算法则束缚学生,突出对计算方法的探索和理解。不求算法一步到位,适当展开了算法逐步发展、逐渐完善的过程。加强与整数加、减法的有机联系,帮助学生形成包摄性更大的认知结构。
第二,练习数量比较充足,练习形式活泼多样,避免机械、被动、乏味的计算训练。学生可能出现的计算错误,引起学生的注意;鼓励学生用计算器进行较繁的加、减计算;利用验算提高正确率,培养良好的计算习惯。
第三,注重计算知识的实际应用,除了解决购买物品时花钱和找钱的问题外,还有通过计算反映病人体温的变化情况、统计家庭里主要的收入和支出情况、计算水位高度、测量水的深度等内容,对培养应用意识和实践能力有积极的作用。
1. 因势利导,设计算法的探究过程;由表及里,促进算法的完善发展。
学生在三年级曾经进行过一位小数的加、减计算,由于两个加数、被减数和减数都是一位小数,他们不自觉地做到了小数点对齐。虽然进行了小数加、减计算,并没有形成计算的法则。本单元的例1和“试一试”“练一练”,通过创设问题情境,营造认知矛盾,因势利导,逐步构建小数加法和减法的计算法则。
(1) 例1要解决的主要问题是,列加法和减法的竖式,应该把小数点对齐。
这道例题的教学安排是,先在小数加法中理解“小数点对齐”的问题,再向小数减法迁移。把小数点对齐不是教材和教师告诉学生的,而是学生联系已有经验,经过体会得到的。求小明和小丽一共用了多少元,是两位小数加一位小数的计算。教材先让学生试着列竖式算,预计可能出现两种列法,一种是把两个加数的小数点对齐着列,另一种是把两个加数的末位对齐着列。教材接着让学生研究“两种算法哪一种正确”。这里不是凭“小数点有没有对齐”来评判哪个竖式正确,而是联系已有的经验,分析和体会哪种算法正确。学生可以结合具体数量,4.75元是4元7角5分,3.4元是3元4角,4.75+3.4的竖式应该把表示“元”“角”“分”的数分别对齐着写,才便于相加。也可以从小数的意义进行分析,4.75是4个一、7个0.1和5个0.01,3.4是3个一、4个0.1,根据整数加法的经验,把相同计数单位的`数对齐着列竖式,最便于计算。还可以通过估计作出判断,4元多加3元多要超过7元,所以得数是5.09的那个竖式肯定是错的。学生通过上面的思考和交流,形成共识:要把小数点对齐着算。
在求小明和小丽一共用了多少元的计算中,还有一点也应引起学生注意:十分位上的数相加满10,要向个位进1。这一点可以从“10个0.1是1”得到解释。
例1的第二个问题是小明比小丽多用多少元。这个问题在教学内容上,从加法计算迁移到减法计算,是一步发展。在学生认知过程上,从理解方法到独立进行计算,可以内化算法。教学这个问题,只要突出一点,即竖式怎样写。
(2) “试一试”教学的主要内容是,和或差的小数末尾如果有“0”,应该化简。
求小明和小芳一共用了多少元和小芳比小明少用多少元,都要列竖式计算。“试一试”的第一个教学任务是巩固“小数点对齐”这个必须遵循的写竖式的规则,让学生独立计算就能达到这一教学目的。第二个教学任务是化简计算结果。小明和小芳一共用了7.40元,小芳比小明少用1.10元,和与差的小数末尾都有“0”。在教学小数的性质时,教材中曾经指出:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。现在要应用小数的性质化简计算的结果。教学时要注意两点: 第一,计算的结果,如果小数末尾的“0”没有去掉,计算是正确的,不能仅以没有把小数化简而判定计算是错误的;第二,要引导学生自觉地应用小数性质,把得数里小数末尾的“0”去掉。去掉的方法是,在竖式上把这些小数末尾的“0”逐个划掉。
(3) 引导学生反思算法,构建计算法则。
在例1和“试一试”里,学生经历了两次小数加法计算和两次小数减法计算,初步知道小数加、减法的竖式应该怎样算,还知道计算的结果要根据小数的性质化简。这些都是他们在探索学习过程中的体验,在此基础上,要引导学生算法。“试一试”下面的两个问题,先引发学生回顾反思,再通过交流形成法则。这两个问题不是简单地回忆“是怎样”和“要怎样”,而是寻找小数加、减法和整数加、减法在计算时的相同点,从“相同数位上的数对齐”的高度认识“小数点对齐”,把已有的整数加、减法的计算法则推广到小数加、减法,并进一步加强对整数加、减法法则的理解和应用。至于“小数计算的结果,要根据小数性质进行化简”是小数计算的个性特点,与整数计算不同。教材再一次引起学生注意,作为小数加、减计算法则的补充内容。尽管教材里没有呈现小数加法和减法的计算法则,事实上法则已存在于学生的认知结构里了。学生经过自己的努力,得出这样的认识与方法,就是探索和创新。
(4) 在“练一练”里帮助学生澄清一些认识。
第1题让学生在已经列出的竖式上计算,有两处要引起学生注意,一是24加9.9是整数加小数,也应该把小数点对齐着算。可以让学生看一看、想一想,竖式是怎样列的?小数点对齐没有?为什么?二是7.56减4.56的差的小数部分是0,可以让学生说一说,差应该怎样化简?差是多少。第2题选择了学生初学小数加、减法时往往发生的错误,通过指出并改正错误,引起学生的重视。随着上面一些认识的澄清,学生将更好地理解和掌握小数加法和减法的计算方法。
2. 集中力量解决计算中的难点问题,因人制宜,允许学生选择自己需要的方式。
在计算小数减法时,如果被减数小数部分的位数比减数小数部分的位数少, 学生往往发生错误。教材把这种情况视作计算中的难点问题,安排例2加以解决。其实,这个问题的解决不是例2才开始,在前面已有铺垫。
(1) 在教学计算法则时,已经出现了两个加数的小数部分位数不同、被减数的小数位数比减数多的情况。
例1计算4.75+3.4的竖式,百分位上怎样算?这一位上不是把“5”移下去,是算5+0=5,“0”是根据小数的性质,在3.4的末尾添上的。同样,4.75-3.4的百分位上是算5-0=5,也可以根据小数性质,在3.4的末尾添上“0”。这些可以添上的“0”只是没有写出来,把它想在脑里了。类似的情况在第48页“练一练”里和练习八第2题里也多次出现,如果教学时注意到这些,那么已经为例2的教学作了很好的铺垫。
(2) 在例2和“试一试”里集中力量突破难点。
例2的竖式中,3.4的末尾有红色的“0”,并加了虚线框。这个“0”不是一开始就写出来的,是在计算情境中出现的。依据3.4-2.65写出的竖式,被减数百分位上空着。这一位上是几减几?由此联想小数的性质,可以在3.4的末尾添上一个“0”。写出了这个“0”,百分位上怎样算就清楚了。教材把“0”加红色,意在把精力集中到这个“0”上,着重解决两个问题:这个“0”是哪来的?这个“0”对计算有什么作用?把“0”套上虚线框的意思是,这个“0”一般不写出来,只要把它想在脑里。这是对多数学生的导向。至于部分计算能力较弱的学生,仍允许他们把这个“0”写出来,能防止算错。
“试一试”计算8-2.65,这是整数减两位小数,计算难度比例2大一些。教材让学生独立计算,应用例2中学到的方法。在他们计算时,通过大卡通的提问给予适当启示。如果有些学生把被减数十分位、百分位上的“0”写出来,要指导他们先在被减数个位的右下方点上小数点,再在小数的末尾添“0”。
教材要求“再选择两种物品,算出它们的单价相差多少元”扩大“试一试”的容量。要有意识地让学生计算8-3.4、8-4.75、4.75-3.4等被减数与减数的小数位数不同的题,消化学习的新知识。
“练一练”里大多数题的被减数小数位数比减数少,让学生巩固并掌握新知识。也有少量两位小数减一位小数、两位小数减两位小数的题,有利于学生把新旧知识融合起来,既把新学习的计算纳入已有的法则,又充实了计算的技能。
练习八里的小数加、减法口算,是在初步掌握笔算的基础上进行的,通过这些口算进一步掌握小数加、减法的计算法则。本单元安排的小数加、减法口算题,把相同数位上的数对齐以后,进行的计算能够和整数的两位数加一位数、整十数或两位数的口算相衔接。第5题对小数加、减计算进行验算,要把整数加、减法的验算方法迁移过来。加法的验算一般应用加法交换律进行,减法的验算一般应用减数加差等于被减数这个关系。
3. 把整数加法的运算律和减法的运算性质向小数加法和减法扩展。
在四年级(上册)教学了加法交换律、结合律以及减法的运算性质。学生已经理解了这些运算律和运算性质的内容,并能应用于整数加、减计算。整数加法的运算律和减法的运算性质对小数加、减法是不是适用?这是本单元例3和练习九第2题要解决的问题。
“同样适用”包括两层意思: 同样存在和同样应用。例3让学生计算四个小数相加的和,列出算式以后,有些学生会按运算顺序依次相加,也会有学生调换加数的位置,另行组织相加的顺序。各种算法的最后得数相同,说明了两点:一是小数连加也可以交换加数的位置,也可以把加数结合相加,计算结果不会改变。即小数加法同样有交换律和结合律。二是各种算法的简便程度不同,依次相加比较麻烦,需要列竖式笔算。应用运算律使算法简便,只要口算。这两点共同表明,整数加法的运算律,对小数加法也同样适用。“同时存在”和“同样应用”的认知方式不同,前者是发现、验证,后者是迁移。教材把这两点教学内容设计在一个载体里,通过计算四个小数相加的和,既验证了存在,又体会到原有的应用经验可以迁移过来。这些都是“练一练”的基础和知识基础。
教学减法的运算性质也作了类似的安排。练习九第2题通过两组式子的算一算、比一比,发现整数减法的运算性质在小数减法里同样存在,因此,也可以用于小数减法的简便运算。
4. 使用计算器计算小数加法和减法,体会计算工具方便了计算。
例4教学使用计算器进行小数加、减法计算。教学过程大致分成两段: 第一段以0.8为例,让学生在操作计算器的活动中,学会往计算器里输入小数的方法,体会到输入小数的方法和输入整数的方法基本相同,只是多按一个小数点的键;第二段是计算五种物品的总价和付出100元应找回的钱数。一方面熟练使用计算器的方法,另一方面感觉到用计算器算比笔算方便得多。
“练一练”里都是小数加、减计算和混合运算。像这些比较繁的计算没有笔算要求,都可以用计算器算。练习九第8题算出各次收入或支出后的余额,计算量很大,而且比较繁。这些练习都能使学生体会使用计算器的好处。
小学数学教案 篇7
教学内容:教科书第8183页,练习十八的第24题。
教学目的:
1.使学生能比较熟练地读、写数。
2.使学生能比较熟练地进行数的改写。
3.使学生能比较熟练地进行数的大小比较。
教学过程:
一、数的读写
1.整数的读法和写法。
(1)指名说整数的读法。对说得不完整的,让其他同学补充。学生说时,不必要求与书上的叙述完全一致,只要意思正确就可以了。
出示:52000803100
先让两名学生试读,然后问他们是怎么读的。如这个数有几级?哪些0是在数级末尾不必读出来,哪些0要读出来?8前面为什么只读一个零?教师根据学生的回答,对数进行分级,并用彩色粉笔把不同0区分开。
(2)指名说整数的写法。要求与整数读法一样。
出示:四十亿六干零六十万零五十
全班学生在练习本上写数。集体订正时,指名说一说是怎样写的。
2.小数和分数的读写法。
指名分别说一说小数、分数的读法和写法。并让学生比较小数、分数的读法和写法与整数的读法和写法有什么联系和区别。
3.课堂练习。
完成教科书第82页中间做一做的第1、2题。
第1题,指名读数。可以有意识地让学习有困难的学生说一说。
第2题,学生独立写数,集体订正。
二、数的改写
1.较大的多位数改写成用万、亿作单位的数。
教师:我们已经学过,一个较大的多位数,为了读写方便,常常把它进行改写。
想想,有几种改写的方法?指名回答,使学生明确一般有两种方法:(1)改写成用万或亿作单位的数;(2)省略这个数某一位后面的尾数,写成近似数。然后,教师用书上的例子进行说明。如果班里学生掌握的比较好,也可以让学生自己举例说明。
在说明第(2)种情况时,要使学生明确是用什么方法省略的。还可以进一步提问:如果根据需要省略干位后面的尾数,求得的近似数的单位应该是多少?
接着让学生独立完成教科书第82页下面做一做的练习题。
2.求小数的近似数。
出示例题,让学生独立解答。集体订正时,让学生说一说是怎么求一个小数的近似数的。对于4.629754.630,要特别提问:4.630末尾的0为什么不能去掉?
3.假分数与带分数或整数相互改写(互化)。
教师:我们在进行分数四则运算时,经常要根据需要把假分数与带分数或整数相互改写。大家还记得改的方法吗?指名说一说。如果学生说得不清楚,教师可以适当提示:
什么样的假分数可以改写成带分数?
什么样的假分数可以改写成整数?
带分数怎样改写成假分数?
整数怎样改写成假分数?要使学生明确,整数可以根据需要化成不同分母的假分数。
出示教科书中例题,让学生独立改写,集体订正。
4.分数、小数与百分数的互化。
(1)分数和小数的互化。
教师:根据小数和分数的关系.怎样把小数化成分数:(小数化成分数,原来有见位小数.就在1后面写几个0作分母.把原来的小数去掉小数点作分子;化成分数后,能约分的要约分。)学生回答进时。只要把意思说正确就可以了。关键是使学生明。确,小数化成分数,要先把小数改写成分母是10、100、1000的分数,再约分。教师按教科上的图解分步画图。
改写成分母是10、100、1000的分数,再约分:
教师可以根据分数化成小数的两种情况,先引导学生分别回忆,再概括总结。
分母是10、100、1000的'分数怎样化成小数?(可以直接去掉分母,看分母中有见个0.就从分子的最后一位起向左数出几位。点上小数点。)这实际上是应用了什么知识?(分数与除法的关系。)
分母不是10、100、1000朗分数怎样化成小数?(要用分母去除分子:除不尽时,可以根据需要按四舍五入法。保留几位小数。)
通过分析上面两种情况.谁能概括出分数化成小数的一般方法?(用分母去除分子。)教师板书。
改写成分母是10、100、1000的分数。再约分。
用分母去除分子
什么样的分数可以化成有限小数,什么样的分数不能化成有限小数?
把下面的分数化成小数,并且记住这些结果。
1 1 3 1 2 3 4 1 1 1
2 4 4 5 5 5 5 8 20 25
(2)小数和百分数的互化。
指名说一说小数和百分数互化的方法。教师根据学生的回答,按照教科书的图解进行板书。
(3)分数和百分数的互化。
指名说一说分数和百分数互化的方法。教师板书完成图解。
(4)课堂练习。
完成练习十八的第3题的第(2)、(3)小题,学生独立计算,教师巡视,对学习有困难的学生进行个别辅导,集体订正。可以让做得比较快的学生说一说是怎样做的,有没有比较简便的方法。
三、数的大小比较
先让学生独立做教科书第83页做一做的第l、2题。然后,教师引导学生归纳数的大小比较的方法。
教师:怎样比较整数、小数的大小?
比较分数的大小有几种情况?(三种:分子相同,分母相同,分子和分母都不相同。)
分母相同的分数,怎样比较它们的大小?
分子相同的分数,怎样比较它们的大小?
分母、分子都不相同的分数,怎样比较它们的大小?
四、小结(略)
五、作业
练习十八的第2题,第3题的第(1)小题,第4题。
对学有余力的学生可以让他们思考练习十八的第5题和第6题。
小学数学教案 篇8
教学内容:
以求和为基本数量关系的两步计算应用题(书p51)。
教学目标:
使学生理解以求和为基本数量关系的两步计算应用题的结构,能用分析法或综合法分析数量关系,会口述解题步骤,能正确地列式解答。
教学步骤:
一、准备引新
1、秋天到了,让我们到果园里看看吧!果园里种满了什么树呀?如果老师告诉大家果园里有苹果树1420棵,要求苹果树和梨树一共有多少棵?(出示准备题1)你能解答吗?为什么?谁来补一个条件呢?
2、学生补充条件,并列式计算
梨树有1000棵 1420+1000=2420(棵)
3、这是一道几步计算的应用题?谁能补一个条件,使它成为两步计算的应用题?
学生口答补充:
(1)梨树比苹果树少420棵
(2)梨树比苹果树多420棵
(3)苹果树比梨树少420棵
(4)苹果树比梨树多420棵
4、揭题:这样的两步计算应用题就是我们今天要学习的新课,现在我们先一起来研究第一种
二、探究新知:
1、研究例3
(1) 读题,找条件和问题,师画出线段图
(2) 根据小黑板上的思考提示,同桌互说这道题的解题思路
(3) 学生在本子上试做这道题,只用列出分步算式,快的同学可以列出综合算式。
(4) 指名板演算式,集体交流:指名说解题思路,1420表示什么?1000表示什么?
(5) 综合算式怎么写 ?谁还有不同的写法?1420-420表示什么?
2、如果补充的是梨树比苹果树多420棵,你怎样想?怎样算呢?根据思考提示自己思考后在本子上列式计算。
指名板演,并说说先求什么?再求什么?
3、小结:
我们今天学习的两步计算应用题跟以前学习的两步计算应用题在条件上有什么不同?只有两个条件的'时候,其中一个条件需要用到几次,这两题中的哪个条件用了两次?第一次用它求什么?第二次用它求什么?但今天学习的两步计算应用题跟以前学习的两步计算应用题有一点还是相同的,那就是关键都是先求出中间问题。
三、巩固深化
1、p52练一练1,请学生写在书上,集体校对
2、p52练一练2,看线段图列式计算
3、p52练一练3判断:谁的解法对?
小刚:240+40=280(人)
小明:240+40=280(人)
240+280=520(人)
小华:240-40=200(人)
240+200=440(人)
小青:240+240=480(人)
480+40=520(人)
小组讨论,选出正确的答案,错的答案要说说错在哪里?
4、p53练一练5
5、p53练一练4
四、总结
今天你学会了什么?
小学数学教案 篇9
教学目标
1.使学生认识条形统计图,知道条形统计图的意义和用途.
2.了解制作条形统计图的一般步骤,初步学会制作条形统计图.
教学重点
掌握制条形统计图的一般步骤,能看图准确地回答问题.
教学难点
制条形统计图的第(2)、(3)步,即分配条形的位置和决定表示降水量多少的单位长度.
教学步骤
一、铺垫孕伏.
我们学过简单的数据整理,统计数据除了可以分类整理制成统计表外,还可以制成统
计图,用统计图表示有关数量之间的关系,比统计表更加形象、具体,使人一目了然,印象深刻.常用的统计图有条形、拆线和扇形统计图(用投影器逐一显示)五年级的.时候,我们已初步认识了条形图,这节课我们继续学习条形统计图.(板书课题:条形统计图)
二、探求新知.
(一)介绍条形统计图的意义及特点.
意义:条形统计图是用一个单位长度表示一定数量,根据数量的多少画出长短不同的
直条,然后把这些直条按照一定的顺序排列起来.
特点:从图中很容易看出各种数量的多少.
教师提问:
l、图中统计的内容是什么?
2、图中画有两条互相垂直的射线,请你看看水平射线和垂直射线分别表示什么?
3、每个车间多少人?哪个车间人数最多?哪个车间人数最少?
(二)教学制作条形统计图的方法.
1、出示例1 某地1996~20xx年的年降水量如下表.
年份
1996年
1997年
1998年
1999年
20xx年
降水量(毫米)
920
860
1005
670
704
根据上表的数据,制成条形统计图.
2、教学制作方法,师边示范边讲解.
①根据图纸的大小,画出两条互相垂直的射线.
教师讲述:要制的统计图有年份和降水量两方面的内容,需要用两条射线来表示.
先画一条水平的射线(向右)表示年份,再画一条与水平射线垂直的射线表示降水量.
教师说明:水平射线下面及垂直射线左面都要留有一条空白,因为水平射线下面要注明每个直条所表示的内容,垂直射线旁要注明各直条的数据,两条射线不能画在图纸的中间部位,因为那样会因高度不够画不下,或排不下五个直条.
②在水平射线上适当分配条形的位置,确定直条的宽度和间隔.
教师提问:例1的统计表中有几个年份?那么图中要画几个直条?
③在垂直射线上根据数的大小具体情况,确定单位长度表示多少.
教师讲述:年降水量最高的数据是1005毫米,垂直射线的高度要略高于最大的数量.在垂直射线上方要注明单位.
④按照数据的大小画出长短不同的直条.
教师讲述:为了准确地表示各个数据,还应在每个直条的顶上注明数量.
(三)引导学生看图分析.
1、哪一年的降水量最多?是多少毫米?(1998年降水量最多,1005毫米)
2、哪一年的降水量最少?是多少毫米?(1999年降水量最少,670毫米)
3、最多年降水量是最少年降水量的几倍?(1005670,是1.5倍)
教师提问:对照统计图和统计表说一说,用哪种方式表示的数量关系更直观?
小学数学教案 篇10
一、教材内容分析
1.人教版四年级下册第8单元书119页
二、教学目标(知识与技能、过程与方法、情感态度与价值观)
1、进一步理解和掌握在直线上植树问题的解题规律。
2、会根据实际问题,灵活选择方法进行解答。
3、经历解决植树问题的过程,体验比较、区别学习方法。
4、感受数学与生活之间的密切联系,激发学习兴趣,培养学生的探究精神。
三、学习者特征分析
学生通过生活中的简单事例,初步体会解决植树问题的思想方法和它在解决实际问题中的应用,应该让学生从实际问题入手,逐步发现隐藏于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的'应用。
四、教学策略选择与设计
认真观察分析,运用规律解决问题
五、教学环境及资源准备
投影仪
六、教学过程
教学过程 教师活动 预设学生行为 设计意图及资源准备
一、复习回顾
(1)教师:上节课我们共同学习探讨了有关植树的数学问题,植树问题中有哪几种情形?解答时应注意什么问题?组织学生在小组中议一议。相互交流。再组织学生汇报,教师根据学生汇报板书:
①两端都要栽:植树棵树=间隔数+1
②两端都不栽:植树棵数=间隔数-1
③只栽一端:植树棵数=间隔数 学生在小组中议一议。相互交流。
二、指导练习
(1)教材练习二十第1题。
①学生读题:理解题意。
②小组讨论:当大钟敲5下时,前后共有几次间隔?平均每次间隔时间有多长?
③大钟敲12下,需要多长时间呢?
大钟敲12下,共有11次间隔,所以共需时间是:2×11=22(秒)。
组织学生读题,理解题意。
(2)教材练习二十第3题
教师:从王村到李村之间设电线杆,会有几种情况?
学生在小组中根据分析的情况,独立解答,并相互交流。根据可能会存在的三种情况,分别有三种解答结果。
a.16-1=15 200×15=3000(米)
b.16+1=17 200×17=3400(米)
c.200×16=3200(米)
教材第119页思考题。
教材练习二十第4题。
①学生读题,理解题意。
②学生观察示意图,小组讨论:有多少个间隔?有多少盏灯?
教师:你发现了什么?
教师引导学生归纳总结:在封闭路线上植树时,间隔数=植树棵树。(板书)
教师引导学生分析:3号在1号队员的前面,1号队员不是第4名,而3号队员不是第1名,所以3号队员是第2名,而1号队员是第3名,当1号队员第3名时,由于号码名次不同,所以2号是第4名,4号是第1名。
所以排名是:
1号 2号 3号 4名
第3名 第4名 第2名 第1名
学生小组讨论后汇报,可能会说出:大钟敲5下,共有4次间隔,平均每次间隔时间是8÷4=2(秒)。
学生独立思考,并解答。教师指名汇报,然后集体订正。
组织学生议一议,然后汇报。汇报时学生可能会说出:共有三种情况:
a. 两端都设有电线杆。
b. 两端都不设电线杆。
c. 只在一端设电线杆。
学生讨论后汇报,汇报时可能会说出:1号第3名,2号第4名,3号第2名,4号第1名
三、应用练习
(1)一度长180米的大桥两侧,每隔30米安装一盏路灯。
①两端要安装,需路灯几盏?
②两端不安装,需路灯几盏?
(2)小刚到电影院看电影,他前面有8排,后面有9排,左边有15个座位,右边有17个座位。电影院一共有多少个座位?(每排座位一样多 学生独立练习,然后小组交流。
指2名学生板演,再集体订正。
学生读题,理解题意。
小组合作讨论,交流解答。
四、总结
通过这节课的练习,你又有哪些收获?
板书设计: 植树问题
【小学数学教案】相关文章:
[经典]小学数学教案07-27
小学数学教案【精选】07-24
小学数学教案[精选]08-12
【经典】小学数学教案08-24
小学数学教案(经典)08-29
(精选)小学数学教案08-28
【精选】小学数学教案08-23
小学数学教案(精选)08-01
小学数学教案【经典】08-02
小学数学教案11-11