- 相关推荐
定积分概念教案
作为一名无私奉献的老师,很有必要精心设计一份教案,教案有利于教学水平的提高,有助于教研活动的开展。那么你有了解过教案吗?以下是小编为大家整理的定积分概念教案,仅供参考,欢迎大家阅读。
定积分概念教案1
一、教材分析
1、教材的地位和作用
本节课选自同济大学《高等数学》第五章第一节定积分的概念与性质,是上承导数、不定积分,下接定积分在几何学及物理学等学科中的应用。定积分的应用在高职院校理工类各专业课程中十分普遍。
2、教学目标
根据教材内容及教学大纲要求,参照学生现有的知识水平和理解能力,确定本节课的教学目标为:
(1)知识目标:理解定积分的基本思想和概念的形成过程,掌握解决积分学问题的“四步曲”。
(2)能力目标:培养学生分析和解决问题的能力,培养学生归纳总结能力,为后续的学习打下基础。
(3)情感目标:从实践中创设情境,渗透“化整为零零积整”的辩证唯物观。
3、教学重点和难点
教学重点:定积分的概念和思想。
教学难点:理解定积分的概念,领会定积分的思想。
二、教法和学法
1、教法方面
以讲授为主:案例教学法(引入概念),问题驱动法(加深理解),练习法(巩固知识),直观性教学法(变抽象为具体)。
2、学法方面
板书教学为主,多媒体课件为辅(化解难点、保证重点)。
(1)发现法解决第一个案例;
(2)模仿法解决第二个案例;
(3)归纳法总结出概念;
(4)练习法巩固加深理解。
三、教学程序
1、导入新课:
实例1:曲边梯形的.面积如何求?
首先用多媒体演示一个曲边梯形,然后提出问题:
(1)什么是曲边梯形?
(2)有关历史:简单介绍割圆术及微积分背景。
(3)探究:提出几个问题(注意启发与探究)。a、能否直接求出面积的准确值?
b、用什么图形的面积来代替曲边梯形的面积呢?三角形、矩形、梯形?采用一个矩形的面积来近似与二个矩形的面积来近似,一般来说哪个值更接近?二个矩形与三个相比呢?探究阶段、概念引入阶段、创设情境、抛砖引玉。
(4)猜想:让学生大胆设想,使用什么方法,可使误差越来越小,直到为零?
(5)论证:多媒体图像演示,直观形象模拟,让学生逐步观察到求出面积的方法。
(6)教师讲解分析:“分割成块、近似代替、积累求和、无穷累加”的微积分思想方法。思解阶段、概念探索阶段、启发探究、引人入胜。
(7)总结: 总结出求该平面图形面积的极限式公式。
实例2.如何求变速直线运动物体的路程?
(1)提问:通过类似方法解决,注意启发引导。
(2)归纳:用数学表达式表示。
2、讲授新课
归结阶段、提炼概念:
实例1和实例2的共同点:特殊的和式极限。
方法:化整为零细划分,不变代变得微分,积零为整微分和,无限累加得积分。
定义阶段、抓本质建立概念、深化概念:
(1)定义:写出定积分的概念。
(2)定义说明。
3、练习巩固
(1)例
1、求定积分10x2dx.学生练习,教师点评练习,让概念具体化。
(2)练习巩固:求定积分21exdx.
4、归纳总结
总结:梳理知识、巩固重点
(1)回顾四个步骤:①分割②近似③求和④取极限。
(2)回顾定积分作为和式极限的概念。
(3)加深概念理解的几个注意。
(4)会用定积分的概念计算定积分。
5、布置作业
定积分概念教案2
学习目标
1、知识与技能目标
理解并掌握定积分的概念和定积分的几何意义。
2、过程与方法目标
通过学生自主探究、合作交流,培养学生分析、比较、概括等思维能力,形成良好的思维品质。
3、情感态度与价值观目标
通过学生积极参与课堂活动,让学生体验创造的激情和成功的喜悦,教学过程中及时地表扬鼓励学生,让学生领会到实实在在的成就感。
教学重点 定积分的.概念,定积分的几何意义。
教学难点 定积分的概念。
一、创设情境,引入新课
创设情境:请大家闭上双眼,回忆曲边图形面积的求法,求 与直线 =1, =0所围成的平面图形的面积。
教师口述:分割→近似代替→求和→取极限
引入新课:定积分的概念
如果函数 在区间 上连续,用分点
将区间 等分成 个小区间,每个小区间长度为 ( ),在每个小区间 上取一点,作和式:
【问题】如果 时,上述和式 无限趋近于一个常数,那么称该常数为___________________________,记为:___________________________,
即:___________________________。
注意:① 称为______________, 叫做_____________, 为_____________, 与 分别叫做________________与________________。
②定积分 是一个常数,只与积分上、下限的大小有关, 与积分变量的字母无关, 。
二、自主探究 合作交流
探究一:在求积分时要把 等分成 个小区间,是否一定等分?
探究二:在每个小区间 上取一点 , 是否一定选左端点?
探究三:分组讨论定积分的几何意义是什么?
探究四:分组讨论根据定积分的几何意义,用定积分表示图中阴影部分的面
三、例题剖析,初步应用
例1 利用定积分的定义,计算 的值
引导:怎样用定积分法求简单的定积分呢?
解:令
定积分的性质
根据定积分的定义,不难得出定积分的如下性质:
性质1 (定积分的线性性质)
性质2 (定积分的线性性质)
思考(用定积分的概念解释):
性质3 (其中 )
(定积分对积分区间的可加性)
思考(用定积分的几何意义解释):
四、课堂练习 巩固提高
1、从几何上解释: 表示什么?
2、计算 的值。
五、知识整理,纳入系统
1、今天你学到的知识点:
2、数学方法: 观察、比较、概括、归纳、概括,从有限到无限。
六、 分层作业,巩固提高
1、必做题:课本P80习题第1、2、3题
2、选做题:课后探究题:
(1)用定积分的几何意义说明下列不等式:
① ②
(2)求曲线 , 与直线 , 所围成平面图形的面积。
定积分概念教案3
学情分析:
前面两节(曲边梯形的面积和汽车行驶的路程)课程的学习为定积分的概念的引入做好了铺垫。学生对定积分的思想方法已有了一定的了解。
教学目标:
(1)知识与技能:定积分的概念、几何意义及性质
(2)过程与方法:在定积分概念形成的过程中,培养学生的抽象概括能力和探索提升能力。
(3)情感态度与价值观:让学生了解定积分概念形成的背景,培养学生探究数学的兴趣。
教学重点:
理解定积分的概念及其几何意义,定积分的性质
教学难点:
对定积分概念形成过程的理解
教学过程设计:
教学环节
教学活动
设计意图
一、复习引入:
曲边梯形的面积 :
变速运动的路程:
归纳解决曲边梯形面积和变速直线运动的共同特征:第一,都通过“四步曲”——分割、近似代替、求和、取极限来解决问题;第二,最终结果都归结为求同 一种类型的.和式的极限。
结合已学的相关知识基础学习新概念。
二、新课讲解
1.定积分概念
如果函数在区间上连续,用分点将区间等分成个小区间,在每个小区间上任取一点,作和式当时,上述和式无限接近某个常数,这个常数叫做函数在区间上的定积分,记作,即
2.定积分概念的理解
(1)关于区间分法。对区间的分割应该是任意的,只要保证每一小区间的长度都趋向于0就可以了。
(2)关于的取法。在定积分的定义中,规定是第小区间上任意取定的点,这主要是考虑到定义的一般性,但在解决实际问题或计算定积分时,可以把都取为每个小区间的左端点或右端点,以便于得出结果。
(3)定积分中符号的含义:叫做积分号,分别叫做积分下限和积分上限,区间叫做积分区间,函数叫做被积函数,叫做积分变量,叫做被积式。
定积分的值与积分变量用什么字母表示无关,即有。
(4)定积分的含义(与不定积分的区别):是一个和式的极限——是一个确定的常数;是的全体原函数——是函数。
详细剖析新概念,让学生透彻理解。
3.定积分的几何意义。
(1)学生在回顾前面两个实例的基础上做出回答:
1.5。1中曲边梯形面积:
1.5。2中汽车在这段时间经过的路程:
(2)探究(课本52页):如何用定积分表示位于轴上方的两条曲线与直线围成的平面图形的面积。
结合图形,回忆前两节的两个实例讲解,学生容易接受。
例1 利用定积分的定义,计算的值。
(使学生进一步熟悉定积分的定义,熟悉计算定积分的“四部曲”,注意引导学生选取为特殊点以便于计算。)
4.定积分的基本性质:
由于没有学习极限相关知识,教学中,不要求学生证明这些基本性质,可帮助学生从几何直观上感知。
例2:计算定积分
分析:利用定积分的性质(1)、(2),可将定积分转化为,利用定积分的定义分别求出,,就能得到定积分的值。
此例可以说明定积分性质的应用。
三、练习
①计算的值,并从几何上解释这个值表示什么。
②利用定积分的定义,证明,其中均为常数且。
③试用定积分的几何意义说明的大小。
进一步熟悉定积分的概念。
进一步熟悉定积分的几何意义。
四、课堂小结
定积分的定义,计算定积分的“四步曲”,定积分的几何意义,定积分的性质。
归纳,小结本节的知识。
练习与测试:
(基础题)
1.函数在上的定积分是积分和的极限,即_________________ 。
答案:
2.定积分的值只与______及_______有关,而与_________的记法无关 。
答案:被积函数,积分区间,积分变量;
3.定积分的几何意义是_______________________ 。
答案:介于曲线,轴 ,直线之间各部分面积的代数和;
4.据定积分的几何意义,则
5.将和式极限表示成定积分
(1)解:
(2)其中解:
6.利用定义计算定积分
解:在中插入分点,典型小区间为,小区间的长度,取,取即。
定积分概念教案4
【学情分析】:
学生在上一节学习了求曲边梯形面积之后,对定积分基本思想方法有了初步的了解。这一节可帮助学生进一步强化理解定积分概念的形成过程。
【教学目标】:
(1)知识与技能:“以不变代变”思想解决实际问题。
(2)过程与方法:强化掌握“分割、以不变代变、求和、取极限”解决问题的思想方法
(3)情感态度与价值观:通过引导学生用已学知识求曲边梯形的面积,培养学生应用数学的意识。
【教学重点】:
“以不变代变” 的思想方法,再次体会求解过程中蕴含着的定积分的基本思想
【教学难点】:
过程的理解.
【教学过程设计】:
教学环节
教学活动
设计意图
一、创设情景
复习:1.连续函数的概念;
2.求曲边梯形面积的基本思想和步骤;
利用导数我们解决了“已知物体运动路程与时间的关系,求物体运动速度”的问题.反之,如果已知物体的速度与时间的关系,如何求其在一定时间内经过的路程呢?
引导学生类比上节内容解决本节问题,培养学生数学应用意识。
二、新课讲授
问题:汽车以速度组匀速直线运动时,经过时间所行驶的路程为.如果汽车作变速直线运动,在时刻的速度为(单位:km/h),那么它在0≤≤1(单位:h)这段时间内行驶的路程(单位:km)是多少?
引用生活实例
(课本例题)
分析:与求曲边梯形面积类似,采取“以不变代变”的方法,把求匀变速直线运动的路程问题,化归为匀速直线运动的路程问题.把区间分成个小区间,在每个小区间上,由于的变化很小,可以近似的看作汽车作于速直线运动,从而求得汽车在每个小区间上行驶路程的近似值,在求和得(单位:km)的近似值,最后让趋紧于无穷大就得到(单位:km)的精确值.
思想:用化归为各个小区间上匀速直线运动路程和无限逼近的思想方法求出匀变速直线运动的路程
三、探究讨论
思考:结合求曲边梯形面积的过程,你认为汽车行驶的路程与由直线和曲线所围成的曲边梯形的面积有什么关系?
结合上述求解过程可知,汽车行驶的`路程在数据上等于由直线和曲线所围成的曲边梯形的面积.
一般地,如果物体做变速直线运动,速度函数为,那么我们也可以采用分割、近似代替、求和、取极限的方法,利用“以不变代变”的方法及无限逼近的思想,求出它在a≤≤b内所作的位移.
分析求曲边梯形面积过程和求汽车行驶的路程过程的关系,使学生认清问题的本质。
四、典例分析
例:弹簧在拉伸的过程中,力与伸长量成正比,即力(为常数,是伸长量),求弹簧从平衡位置拉长所作的功.
分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解.
解: 将物体用常力沿力的方向移动距离,则所作的功为.
1.分割
在区间上等间隔地插入个点,将区间等分成个小区间:记第个区间为,其长度为把在分段,上所作的功分别记作:
2.近似代替
有条件知:
3.求和
从而得到的近似值
4.取极限
所以得到弹簧从平衡位置拉长所作的功为:变式例题,可以提高学生对定积分思想的认识。
五、课堂练习
一辆汽车在笔直的公路上变速行驶,设汽车在时刻的速度为(单位),试计算这辆车在(单位:)这段时间内汽车行驶的路程(单位:)
学以致用,让学生运用已学知识解决问题。
六、总结回顾
求汽车行驶的路程有关问题的过程与求曲边梯形面积的共同特征,概括出基本步骤
总结好这两节的内容,为下节讲解定积分的概念大好基础。
定积分概念教案5
一、教材分析
1、教材的地位和作用
本节课选自二十一世纪普通高等教育系列教材《高等数学》第三章第二节定积分的概念与性质,是上承导数、不定积分,下接定积分在水力学、电工学、采油等其他学科中的应用。定积分的应用在高职院校理工类各专业课程中十分普遍。
2、教学目标
根据教材内容及教学大纲要求,参照学生现有的知识水平和理解能力,确定本节课的教学目标为:
(1)知识目标:掌握定积分的概念,几何意义和性质
(2)能力目标:掌握“分割、近似代替、求和、取极限”的方法,培养逻辑思维能力和进行知识迁移的能力,培养创新能力。
(3)思想目标:激发学习热情,强化参与意识,培养严谨的学习态度。
3、教学重点和难点
教学重点:定积分的概念和思想
教学难点:理解定积分的概念,领会定积分的思想
二、学情分析
一般来说,学生从知识结构上来说属于好坏差别很大,有的接受很快,有的接受很慢,有的根本听不懂,基于这些特点,综合教材内容,我以板书教学为主,多媒体课件为辅,把概念性较强的课本知识直观化、形象化,引导学生探究性学习。
三、教法和学法
1、教法方面
以讲授为主:案例教学法(引入概念)问题驱动法(加深理解)练习法(巩固知识)
直观性教学法(变抽象为具体)
2、学法方面:
板书教学为主,多媒体课件为辅(化解难点、保证重点)
(1)发现法解决第一个案例
(2)模仿法解决第二个案例
(3)归纳法总结出概念
(4)练习法巩固加深理解
四、教学程序
1、组织教学
2、导入新课:
我们前面刚刚学习了不定积分的一些基本知识,我们知道不定积分的概念、几何意义和性质,今天我们要学习定积分的概念、几何意义和性质。
3、讲授新课(分为三个时段)
第一时段讲授
概念:
案例1:曲边梯形的面积如何求?
首先用多媒体演示一个曲边梯形,然后提出问题
(1)什么是曲边梯形?
(2)有关历史:简单介绍割圆术及微积分背景
(3)探究:提出几个问题(注意启发与探究)
a、能否直接求出面积的准确值?
b、用什么图形的面积来代替曲边梯形的面积呢?三角形、矩形、梯形?采用一个矩形的面积来近似与二个矩形的面积来近似,一般来说哪个值更接近?二个矩形与三个相比呢?……探究阶段、概念引入阶段、创设情境、抛砖引玉
(4)猜想:让学生大胆设想,使用什么方法,可使误差越来越小,直到为零?
(5)论证:多媒体图像演示,直观形象模拟,让学生逐步观察到求出面积的方法.
(6)教师讲解分析:“分割成块、近似代替、积累求和、无穷累加”的微积分思想方法。思解阶段、概念探索阶段、启发探究、引人入胜
(7)总结: 总结出求该平面图形面积的极限式公式
案例2.如何求变速直线运动物体的`路程?
(1)提问:通过类似方法解决,注意启发引导。
(2)归纳:用数学表达式表示。
案例1和案例2的共同点:特殊的和式极限,并写出模型。
方法:化整为零细划分,不变代变得微分,积零为整微分和,无限累加得积分。
归结阶段、提炼概念阶段、类比探究、数学建模
(1)定义:写出定积分的概念。
(2)疑问:不同的分割方法,不同的矩形的高度计算,对曲边梯形的面积有何影响?
(3)定义说明
(4)简单应用
曲边梯形面积直线运动路程
定义阶段、抓本质建立概念、深化概念
例
1、根据定积分的几何意义,求20sinxdx例
2、比较20xdx与20sinxdx的积分值的大小分析并解题解题示范、巩固理解概念阶段
练习1定义计算dxex10练习2将由曲线及直线y=0,x=0,x=1围成的平面图形的面积用定积分表示。学生练习,教师点评练习、训练巩固阶段意义:意义应用概念阶段、概念具体化
1.几何意义分f(x)>0, f(x)<0和f(x)符号不定三种情况。利用图形直观即可得出(关键要说明代数和的含义及原因)。
2.范例(1)将几个平面图形的面积用定积分表示(题目略)。(2)利用几何意义求定积分20)32(dxx的值。第二时段指导练习题
4、归纳总结: 总结:梳理知识、巩固重点
(1)、回顾四个步骤:①分割②近似③求和④取极限
(2)、回顾定积分作为和式极限的概念
(3)、加深概念理解的几个注意点
(4)、几何意义第三时段测验
5、作业布置
【定积分概念教案】相关文章:
定积分概念说课稿(精选5篇)07-28
《集合的概念》教案03-02
《集合的概念》教案3篇03-25
《集合的概念》教案设计08-26
导数概念说课稿07-07
关于积分的制度04-02
性状遗传有一定的规律性教案08-26
数学概念的教学反思03-05
函数的概念教学反思04-03