
- 相关推荐
高中导数教案
作为一位优秀的人民教师,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。如何把教案做到重点突出呢?下面是小编收集整理的高中导数教案,希望对大家有所帮助。
高中导数教案1
教学目标:
1。理解并掌握瞬时速度的定义;
2。会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;
3。理解瞬时速度的实际背景,培养学生解决实际问题的能力。
教学重点:
会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度。
教学难点:
理解瞬时速度和瞬时加速度的定义。
教学过程:
一、问题情境
1。问题情境。
平均速度:物体的运动位移与所用时间的比称为平均速度。
问题一平均速度反映物体在某一段时间段内运动的快慢程度。那么如何刻画物体在某一时刻运动的快慢程度?
问题二跳水运动员从10m高跳台腾空到入水的'过程中,不同时刻的速度是不同的。假设t秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度.
2。探究活动:
(1)计算运动员在2s到2.1s(t∈)内的平均速度。
(2)计算运动员在2s到(2+?t)s(t∈)内的平均速度。
(3)如何计算运动员在更短时间内的平均速度。
探究结论:
时间区间
t
平均速度
0.1
-13.59
0.01
-13.149
0.001
-13.1049
0.0001
-13.10049
0.00001
-13.100049
0.000001
-13.1000049
当?t?0时,?-13.1,
该常数可作为运动员在2s时的瞬时速度。
即t=2s时,高度对于时间的瞬时变化率。
二、建构数学
1。平均速度。
设物体作直线运动所经过的路程为,以为起始时刻,物体在?t时间内的平均速度为。
可作为物体在时刻的速度的近似值,?t越小,近似的程度就越好。所以当?t?0时,极限就是物体在时刻的瞬时速度。
三、数学运用
例1物体作自由落体运动,运动方程为,其中位移单位是m,时
间单位是s,,求:
(1)物体在时间区间s上的平均速度;
(2)物体在时间区间上的平均速度;
(3)物体在t=2s时的瞬时速度。
分析
解
(1)将?t=0.1代入上式,得:=2.05g=20.5m/s。
(2)将?t=0.01代入上式,得:=2.005g=20.05m/s。
(3)当?t?0,2+?t?2,从而平均速度的极限为:
例2设一辆轿车在公路上作直线运动,假设时的速度为,
求当时轿车的瞬时加速度。
解
∴当?t无限趋于0时,无限趋于,即=。
练习
课本P12—1,2。
四、回顾小结
问题1本节课你学到了什么?
1理解瞬时速度和瞬时加速度的定义;
2实际应用问题中瞬时速度和瞬时加速度的求解;
问题2解决瞬时速度和瞬时加速度问题需要注意什么?
注意当?t?0时,瞬时速度和瞬时加速度的极限值。
问题3本节课体现了哪些数学思想方法?
2极限的思想方法。
3特殊到一般、从具体到抽象的推理方法。
五、课外作业
高中导数教案2
一、专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1、导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2、关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3、导数与解析几何或函数图象的'混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
二、知识整合
1、导数概念的理解。
2、利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3、要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
高中导数教案3
教学目标:
1、理解并掌握曲线在某一点处的切线的概念;
2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;
3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化
问题的能力及数形结合思想。
教学重点:
理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。
教学难点:
用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。
教学过程:
一、问题情境
1、问题情境。
如何精确地刻画曲线上某一点处的变化趋势呢?
如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。
如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。
因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。
2、探究活动。
如图所示,直线l1,l2为经过曲线上一点P的两条直线,
(1)试判断哪一条直线在点P附近更加逼近曲线;
(2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?
(3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?
二、建构数学
切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。
思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?
三、数学运用
例1 试求在点(2,4)处的切线斜率。
解法一 分析:设P(2,4),Q(xQ,f(xQ)),
则割线PQ的斜率为:
当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;
当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。
从而曲线f(x)=x2在点(2,4)处的切线斜率为4。
解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的`斜率为:
当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。
练习 试求在x=1处的切线斜率。
解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:
当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。
小结 求曲线上一点处的切线斜率的一般步骤:
(1)找到定点P的坐标,设出动点Q的坐标;
(2)求出割线PQ的斜率;
(3)当时,割线逼近切线,那么割线斜率逼近切线斜率。
思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?
解 设
所以,当无限趋近于0时,无限趋近于点处的切线的斜率。
变式训练
1。已知,求曲线在处的切线斜率和切线方程;
2。已知,求曲线在处的切线斜率和切线方程;
3。已知,求曲线在处的切线斜率和切线方程。
课堂练习
已知,求曲线在处的切线斜率和切线方程。
四、回顾小结
1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。
2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。
五、课外作业
高中导数教案4
教学目标:
1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进
学生全面认识数学的科学价值、应用价值和文化价值。
2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。
教学重点:
如何建立实际问题的目标函数是教学的重点与难点。
教学过程:
一、问题情境
问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?
问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?
问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?
二、新课引入
导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。
1。几何方面的应用(面积和体积等的最值)。
2。物理方面的应用(功和功率等最值)。
3。经济学方面的应用(利润方面最值)。
三、知识建构
例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?
说明1解应用题一般有四个要点步骤:设——列——解——答。
说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极
值及端点值比较即可。
例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才
能使所用的材料最省?
变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?
说明1这种在定义域内仅有一个极值的函数称单峰函数。
说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:
S1列:列出函数关系式。
S2求:求函数的导数。
S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。
例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为
多大时,才能使电功率最大?最大电功率是多少?
说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。
例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的.距离的平方成反比)。
例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。
(1)设,生产多少单位产品时,边际成本最低?
(2)设,产品的单价,怎样的定价可使利润最大?
四、课堂练习
1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。
2。在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。
3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?
4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。
五、回顾反思
(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。
(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。
(3)相当多有关最值的实际问题用导数方法解决较简单。
六、课外作业
课本第38页第1,2,3,4题。
高中导数教案5
教学目标:
1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;
2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数;
3.能够综合运用各种法则求函数的`导数.
教学重点:
函数的和、差、积、商的求导法则的推导与应用.
教学过程:
一、问题情境
1.问题情境.
(1)常见函数的导数公式:(默写)
(2)求下列函数的导数:; ; .
(3)由定义求导数的基本步骤(三步法).
2.探究活动.
例1 求的导数.
思考 已知,怎样求呢?
二、建构数学
函数的和差积商的导数求导法则:
三、数学运用
练习 课本P22练习1~5题.
点评:正确运用函数的四则运算的求导法则.
四、拓展探究
点评 求导数前的变形,目的在于简化运算;如遇求多个积的导数,可以逐层分组进行;求导数后应对结果进行整理化简.
五、回顾小结
函数的和差积商的导数求导法则.
六、课外作业
1.见课本P26习题1.2第1,2,5~7题.
2.补充:已知点P(-1,1),点Q(2,4)是曲线y=x2上的两点,求与直线PQ平行的曲线y=x2的切线方程.
高中导数教案6
一、教学目标:
了解可导函数的单调性与其导数的关系.掌握利用导数判断函数单调性的方法.
二、教学重点:
利用导数判断一个函数在其定义区间内的.单调性.
教学难点:判断复合函数的单调区间及应用;利用导数的符号判断函数的单调性.
三、教学过程
(一)复习引入
1.增函数、减函数的定义
一般地,设函数f(x)的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.
2.函数的单调性
如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.
在单调区间上增函数的图象是上升的,减函数的图象是下降的.
例1讨论函数y=x2-4x+3的单调性.
解:取x1<x2,x1、x2∈R,取值
f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3)作差
=(x1-x2)(x1+x2-4)变形
当x1<x2<2时,x1+x2-4<0,f(x1)>f(x2),定号
∴y=f(x)在(-∞, 2)单调递减.判断
当2<x1<x2时,x1+x2-4>0,f(x1)<f(x2),
∴y=f(x)在(2,+∞)单调递增.综上所述y=f(x)在(-∞, 2)单调递减,y=f(x)在(2,+∞)单调递增。
能否利用导数的符号来判断函数单调性?
【高中导数教案】相关文章:
《导数运算法则》教案01-09
导数概念说课稿07-07
高中舞蹈教案03-16
氓高中教案04-02
高中劝学教案04-01
劝学高中教案04-01
高中向量的教案【精选】03-05
高中概率教案01-09
高中氯气的教案01-17
高中向量的教案01-07