
- 《运算律》教案 推荐度:
- 相关推荐
《运算律》教案15篇[热]
作为一位优秀的人民教师,时常需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。教案要怎么写呢?以下是小编帮大家整理的《运算律》教案,希望对大家有所帮助。
《运算律》教案1
【教学内容】
教材第63页
【教学要求】
使学生进一步理解和学会应用乘法交换律和结合律进行简便计算,培养学生分析推理的能力。
【教学重点】
应用定律简便计算
【教学过程】
一、复习
⒈什么叫乘法交换律?用字母如何表示
⒉什么叫乘法结合律?用字母如何表示?
3、揭示课题
二、教学新课
⒈提问:我们学习的乘法交换律在我们学习中有什么应用?
完成想想做做第6题,指名板演。
⒉提问:我们学习的乘法交换律和乘法结合律,还可以为我们的学习带来哪些方便呢?
a) 请同学们用简便方法计算下面各题
b) 指名说说每题用了什么运算律?为什么要先将这两个数相乘
c) 小结:几个数相乘,可以应用定律,将得数为整十整百的两个数先乘。
3、完成想想做做第题
a) 出示:25*24 45* 1236*15
b) 比较两组中的'两题,你发现了什么?
小结当两数相乘时,不能很快口算出结果进,我们可以将一个因数看成是另外两个因数相乘的形式,注意:把一个数分成两个数后,一定要有两个数的积是整十或整百的数才简便
c) 练习:
在框里填上适当的数
35*18=35*() 16*15=16*( )
45*12=45*( )18*25=18*()
125*32=125*( ) 25*24= 24 * ()
用简便方法计算
45*18 28*15 25*12
三、巩固练习
完成想想做做学生独立完成,集体评讲
《运算律》教案2
教学内容
义务教育课程标准实验教科书(西南师大版)四年级(下)第19~21页例3,课堂活动第1~2题和练习四第2~6题和思考题。
教学目标
⒈进一步理解并掌握乘法交换律和结合律,并能运用这两个运算律进行简便计算。
⒉培养学生灵活运用所学知识解决实际问题的能力。
⒊让学生在老师的引导下,经历克服学习困难的过程,体验数学学习的`成就感。
教学重、难点
灵活运用乘法交换律和乘法结合律进行简便计算。
教学过程
一、 复习旧知,引入新课
1.回忆上节课中所学的乘法交换律和乘法结合律并用自己的语言加以叙述。
2.填空。
我们学习了乘法运算律,这节课我们一起运用乘法运算律进行计算。
二、探索新知
学习例3。
出示例3,算一算,议一议。
61×25×4 8×9×125
教师:观察每个算式中的因数之间有什么特点?可以运用运算律进行简便计算吗?(学生观察思考,独立计算)
全班汇报,教师板书:
(1)
①61×25×4
②61×25×4
③…… =61×100 =1525×4 =6100 =6100
(2)
①8×9×125
②8×9×125
③…… =72×125 =9×1000 =9000 =9000
小组讨论:每题都有几种算法,你认为哪种算法最简便?为什么?运用乘法交换律和结合律进行简便计算时要注意什么?
全班交流汇报。
教师小结:运用乘法运算律进行简便计算,它的核心就是"凑整"。
往往可以把两个或几个数结合在一起乘起来得到整十、整百……有时还可能需要把一个数分解成两个数,再与另外的数结合相乘得到整十数、整百数……总之使计算变得简单。
三、课堂活动
1.课堂活动第1题:先让学生说一说怎样计算简便,并说出依据,再完成在课本上。
2.课堂活动第2题:先让学生独立思考后,再在小组中讨论该怎样进行简便计算,最后全班反馈。
要学生认识到同一个计算可以有不同的简便计算方法。
3.练习四第2题:学生独立完成(连线)后反馈。
4.练习四第7题:学生独立完成后反馈。
5.练习四第8题。
学生观察图中信息,然后抽学生提出问题,教师板演在黑板上。
其余学生判断。
最后让学生独立解决在课堂作业本上,不得少于3个问题。
注意:随时提醒学生观察算式中数据的特点,并应用简便方法进行计算。
四、拓展练习
思考题:引导学生抓住突破点:一是1~9各数字在算式中只出现一次;二是算式中积的个位数字是2。
根据这两个信息可以想到两个因数个位上的数字只能分别是3和4,继续分析便可解决此题。
五、课堂作业
练习四第3~6题。
六、课堂小结
这节课主要学习了什么知识?你还有什么问题吗?
《运算律》教案3
教学内容
义务教育课程标准实验教科书(西南师大版)四年级(下)第17~18页例1~2,练习四第1题。
教学目标
1.经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。
2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
教学重点
在具体情景中探索发现乘法交换律、乘法结合律。
教学过程
一、 创设情景,探索新知
1.教学例1
出示例1图,学生独立列式解答,然后在小组中互相交流。
板书:9×4=36(个),4×9=36(个)。
学生观察板书,思考:这两个算式有什么特点?
板书:9×4=4×9。
教师:你还能写出几个有这样规律的算式吗?
板书学生举出的算式。
如:15×2=2×15
8×5=5×8 ……
教师:观察这些算式,你发现了什么?
学生1:两个因数交换位置,积不变。
学生2:这就叫乘法交换律。
教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)
教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)
2.教学例2
出示例2情景图,口述数学信息和解决的问题。
学生独立思考,列式解答。
然后在小组中交流解题思路和方法。
全班汇报,教师板书。
(8×24)×68×(24×6)=192×6=8×144=1152 (户)=1152 (户)
学生对这两种算法进行观察、比较,有什么相同点和不同点?
板书: (8×24)×6=8×(24×6)。
出示下面的算式,算一算,比一比。
16×5×2= 16×(5×2)= 35×25×4=
35×(25×4)= 12×125×8= 12×(125×8)=
观察算式,有同样的特点吗?每排的两个算式的`结果相等吗?学生独立计算,验证自己的猜想,全班交流。
板书:16×5×2=16×(5×2) 35×25×4=35×(25×4)43×125×8=43×(125×8)谁能说出这几组算式的规律?
学生1:每个算式只是改变了运算顺序。
学生2:每排左、右两个算式计算结果相等。
学生3:三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。
教师:谁知道这个规律叫什么?
教师板书:乘法结合律。
教师:如果用a、b、c表示3个数,可以怎样表示这个规律?
教师板书:(a×b)×c=a×(b×c)。
教师:这个规律就叫乘法结合律。
小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
二、课堂活动
1?练习四第1题:学生独立完成,全班交流,说出依据。
2?连线。
(学生独立完成)
23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)
三、课堂小结
今天这节课你都有哪些收获?还有什么问题?
《运算律》教案4
内容分析
课本54-55页上的内容及数学配套上的相关练题。
课时目标
知识与能力
1、能初步理解乘法结合律。
2、初步感知应用乘法结合律可以使一些计算简便,发展应用意识。
过程与方法
经历乘法结合律的探究过程,会用字母表示乘法结合律,进一步培养发现问题和提出问题的能力,积累数学活动经验。
情感态度价值观
体会计算方法的多样性,进一步发展数感。
教学重难点
教学重点
能理解乘法结合律。
教学难点
能运用乘法结合律,解决一些实际问题。
教学准备
课件、图片
教学媒体选择
PPT
教学活动
自主合作探究
教学过程
一、创设情境,激趣导入。
师:(出示课件)请同学们迅速口算下面的算式。
23×3= 70×5= 13×100= 25×4= 125×8=
师:有谁愿意试一试,直接告诉我答案
生1:69;350;1300;100;1000。
师:好!请坐,太棒了!
二、探究体验,经历过程。
师:观察这两组算式,你发现了什么
生可能说:含有相同的乘数,积相等;都用乘法计算,但运算顺序不同。
师:任意三个数连乘,改变运算顺序,积都不会变吗我们来找出三个数,算算看。
先独立举例子,再在小组内交流,说说想法。为了节省时间,遇到较大的数可以借用计算器。
生汇报列举的等式。先展示,再板书。
师:刚才大家列举了那么多的算式,三个数相乘,虽然运算顺序变了,但结果怎样(不变)
师:同学们来观察这些算式(课件出示:教材第54页例2),你能用自己的.语言,说说这些算式的意义吗
学生尝试回答。
师:其实把大家刚才说的共同点总结起来,就是数学中的乘法结合律。
师:如果用a、b、c三个字母分别表示这三个数,你能写出乘法结合律吗
学生口头用字母表示出乘法结合律。
(a×b)×c=a×(b×c)
师:同学们真聪明!老师把我们刚才发现的过程用语言表示出来,就是“发现问题——举例验证——概括规律”。以后,我们可以用这样的方法,去发现更多的规律。
三、课末总结,梳理提升。
这节课,你有什么收获说给你的小伙伴听听吧。
板书设计
根据老师讲课适当板书
作业设计
完成本节课题。第四单元运算律
课题
《运算律》教案5
教学内容:
复习、梳理第二单元内容。
教学目标:
1、知识与能力:进一步梳理单元知识,从而提高学生应用知识的能力。
2、过程与方法:通过学生回忆、梳理的方法,小组交流展示。
3、情感、态度与价值观:培养学生热爱数学的情感,感受数学的魅力。
重点难点:
乘法分配律的灵活应用。
教学准备:
练习题、教学课件。
教学过程:
一、谈话导入
师:同学们,我们前面复习了加法的运算律,本节课我们一起复习一下乘法的`运算律。
二、回顾乘法运算律
请同学们闭上眼睛想一想,乘法有哪些运算律?
小组交流,并写出乘法的运算律。(并说说其内涵)
小结(课件出示):乘法的结合律:(a×b)×c=a×(b×c)
乘法的交换律:a×b=b×a 乘法的分配律:(a+b)×c=a×c+b×c a÷b÷c=a÷(b×c)
三、知识的应用。
课件出示:
火眼金睛辨对错。并指出错误之处,再改正。
1、13×(4+8)=13×4+13×8 ()
2、(a+b)·c=a+(b·c)()
3、12×4×4×13=4×(12+13)()
4、78×101=78×100+78 ()
5、120÷5÷4=120÷(5×4)()
6、59×80=59×8×10 ()
四、学生做强化练习。练习纸,实物投影展示。
125×7×823×25×432×25380÷5÷2 420÷(5×7)270÷45 12×105135×6+65×685×199+8599×15164×9-64×980-8×25 125×48+125×53-125201×46-46
五、课堂总结。
《运算律》教案6
教学目标:
1、鼓励学生运用猜测、举例、验证等数学方法学习乘法分配律。
2、在学习的过程中,树立用规律简算,增强用规律验算得意识。
设计理念:
1、体现了“生活中处处有数学”。
2、课堂上灵活处理教材,选择适当的教法。
3、提高了小组的合作学习有效性。
4、促进了学生的主动性、个性化的学习。
课前准备:
教学挂图
教学过程:
一、创设情境,引出课题。
出示数学挂图:通过看图,把图意说一说。
二、提出问题,解答质疑。
弄清题以后,你能提出什么数学问题吗? (小组讨论)
生答师板书:济青高速公路全长约多少千米? 怎样解答呢?
(1)要求全长多少千米,可以先求每辆车分别行驶的路程,再求全长的路程。
110 × 2 + 90 × 2 = 220 + 180 = 400 (千米) 还可以先求两辆车1小时行驶的路程,再求全长的路程。
(110+90)× 2 = 200 × 2 = 400(千米)
仔细观察,你能发现什么规律? (小组合作探讨)
生交流:发现两个算式的结果相等。 110×2 + 90×2 =(110+90)× 2 这是个什么规律呢?让我们来验证一下吧。
(小组合作学习) 生自己举例来验证
生答师小结:两个数的和乘一个数,可以把它们分别乘这个数,再把乘得的积相加,这个规律就叫做乘法分配律。 你能用字母表示出这个规律吗?
生板书: (a + b).c = a .c + b .c 通过学习,让学生思考运用乘法分配律解决实际问题。 让学生讨论交流自己的'想法:
①可以进行验算。
②可以使计算简便。 运用乘法分配律能使计算简便吗? (生小组举例探讨)
三、巩固练习
自主练习: 第一题:让学生在小组中快速连接,并说一说运用了什么运算定律。
第二题:先让生自己解答,然后再组内互相说出师运用的什么定律。
第三题:先观察,再说出对错,然后把错的题重新做出来,集体订 正,并说出错题错在哪里。
板书设计: 乘法分配律
110×2 + 90×2 (110 + 90)×2 = 220 + 180 = 200×2 = 400(千米) = 400(千米)
两个数的和乘一个数,可以先把它们分别和这个数相乘,再把乘得的积相加,这个规律就叫做乘法的分配律。
( a + b).c = a .c + b .c
《运算律》教案7
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3215808601
【教学内容】课本第9-11页例1,课堂活动以及练习三第1~5题。
【教学目标】
1、在计算与解决问题的具体情景中体会乘除法的互逆关系和乘除法各部分间的关系。
2、经历探索发现乘与除互逆关系和乘除法各部分间关系的过程,并有成功探索的体验,培养学生的比较、归纳概括能力。
3、能运用乘除法的关系进行验算和解决简单的实际问题。
【教学重点】在计算和解决问题的情景中探索乘除法的互逆关系和乘除法各部分间的关系。
【教学过程】
一、创设情境,激发兴趣
1、教师出示主题图,谈话引入:同学们,你们去过游乐园吗?今天老师和同学们一起到游乐园玩一玩。请同学们仔细观察游乐园情景图,你都获得了哪些数学信息?
(1)学生说出自己选择的数学信息和数学问题,并列出算式解答。教师板书算式:12×5×4=24012×4=4848÷4=1248÷12=4……
(2)学生认真观察算式,你有什么发现?(3)同学们观察得好,你能观察出乘除法各部分间有什么关系吗?今天我们一起来探讨乘除法之间的关系。板书课题:乘除法的关系
二、探究新知
1、教学例
1。教师:刚才我们从情景图中知道:每棵树上挂了4个灯笼。12棵树上挂了48个灯笼。通过这3个信息列出了3道算式,请同学们仔细观察这3道算式。12×4=48 48÷4=12 48÷12=4
(1)结合具体情景,让学生说说每个数所表示的意思和每个算式解决的问题。
(2)看一看除法和乘法之间有什么关系?学生分组讨论,全班交流。 说说每个算式各部分的名称,再比较上面3个算式,你有什么发现?(独立思考,小组讨论,做好记录)各小组汇报结果,教师板书。因数×因数=积 一个因数=积÷另一个因数 被除数÷除数=商除数=被除数÷商 被除数=商×除数已知两个因数的积与其中的一个因数,求另一个因数,用除法。除法是乘法的逆运算。教师:议一议,在有余数的除法里,被除数与商,除数,余数之间有什么关系?学生独立思考后,小组讨论,再汇报。
2、讨论。0不能做除数“0不能做除数”你知道这是为什么吗?先计算下列各题:(1)0÷4=0÷5=0÷134=(2)0÷0=6÷0=学生猜一猜这两组算式的商是几?说出理由。(引导学生根据乘、除法之间的关系来说明)
三、课堂活动
教科书第10页课堂活动。师生对口令,然后同桌互对口令。
四、巩固练习
1、练习三第1题,学生独立做在作业本上。
2、练习三第2题和3题,学生独立完成,全班反馈,说出依据。
五、课堂小结
今天这节课我们学习了什么知识,你都学到了什么?你还有什么问题?教学反思:第二课时乘除法的关系(二)
【教学内容】 课本第10页“议一议”,练习三第6~9题。
【教学目标】
1、初步知道整除,能判断简单的整除问题。
2、在区别“除尽”与“整除”的过程中,培养学生归纳、概括的能力。
【教学重难点】经历从除法中整理出“整除”的过程,能判断简单的`整除问题。
【教学过程】
一、复习导入
(1)口算。(教师板书结果)6÷2=39÷2=15÷12=250÷50=26÷13=25÷7=160÷1=0÷9=76÷21=
(2)观察口算题及计算结果,你有什么发现?在小组里议一议。
二、教授新知教学“议一议”。
(1)全班按小组汇报交流发现的情况。(算式都是整数除以整数计算结果有“除尽”和“除不尽”两类,或有“有余数”和“没有余数”两类……教师将学生发现的情况一一板书出来让学生讨论,同时注意引导得出“整除”来)
(2)教师小结出整除的意义。像6÷2=3,0÷9=0……这些除法算式都没有余数。6÷2=3我们就说6能被2整除,或者说2能整除6。再让学生尝试说说:250÷50=,26÷13=,谁能被谁整除。
(3)再次引导学生讨论:在表示一个数能被另一个数整除的算式中,被除数、除数、商有什么特点?每个学生举出几个表示整除的除法算式。
(4)让学生思考“议一议”的题目。学生先独立思考,然后在小组中互相说一说,最后全班反馈。重点讨论25÷4=6......1。让学生写出对应的乘法算式。
(5)教师小结:被除数等于除数乘商再加上余数,除数=(被除数-余数)÷商。
三、课堂活动
1、同桌对口令,一人说一个除法算式,另一人说出对应的乘法和除法算式,完成后,角色互换。
2、练习三第7题:学生独立完成,点名回答,再集体订正理由。
3、练习三第8题:学生先独立试做,订正时抽学生说说依据。
4、练习三第6题。学生根据题目情境图中的信息,提出并解决问题。
四、拓展练习
练习三思考题:学生独立思考后试做,对有困难的同学可在小组中商量,全班汇报。
五、课堂小结
这节课你都学到了什么?还有什么问题吗?教学反思:第三课时乘法运算律及简便运算(一)
【教学内容】课本第12--13页例1~2,练习四第1题。
【教学目标】
1、经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。
2、理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3、体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
【教学重点】在具体情景中探索发现乘法交换律、乘法结合律。
【教学过程】
一、创设情景,探索新知
1、教学例1。出示例1图,学生独立列式解答,然后在小组中互相交流。板书:9×4=36(个),4×9=36(个)。学生观察板书,思考:这两个算式有什么特点?板书:9×4=4×9。教师:你还能写出几个有这样规律的算式吗?板书学生举出的算式。 如:15×2=2×158×5=5×8……教师:观察这些算式,你发现了什么?教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)2、教学例2。出示例2情景图,口述数学信息和解决的问题。学生独立思考,列式解答。然后在小组中交流解题思路和方法。全班汇报,教师板书。(6×24)×86×(24×8)=144×8=6×192=1152(户)=1152(户)学生对这两种算法进行观察、比较,有什么相同点和不同点?板书: (6×24)×8=6×(24×8)。出示下面的算式,算一算,比一比。16×5×2= 35×25×4=12×125×8= 16×(5×2)= 35×(25×4)= 12×(125×8)= 观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。板书:16×5×2=16×(5×2)35×25×4=35×(25×4)43×125×8=43×(125×8)谁能说出这几组算式的规律?教师:谁知道这个规律叫什么?教师板书:乘法结合律。教师:如果用a、b、c表示3个数,可以怎样表示这个规律?教师板书:(a×b)×c=a×(b×c)。教师:这个规律就叫乘法结合律。小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
二、课堂活动
1、练习四第1题:学生独立完成,全班交流,说出依据。
2、同桌互动:一人写算式,一人说出对应的运算律。
三、课堂小结
今天这节课你都有哪些收获?还有什么问题? 教学反思:第四课时乘法运算律及简便运算(二)
【教学内容】课本第13页例3,课堂活动第2题和练习四第2~6题和思考题。
【教学目标】
1、进一步理解并掌握乘法交换律和结合律,并能运用这两个运算律进行简便计算。
2、培养学生灵活运用所学知识解决实际问题的能力。3、让学生在老师的引导下,经历克服学习困难的过程,体验数学学习的成就感。
【教学重难点】灵活运用乘法交换律和乘法结合律进行简便计算。
【教学过程】
一、复习旧知,引入新课
1、回忆上节课中所学的乘法交换律和乘法结合律并用自己的语言加以叙述。
2、填空。a×b=b×____(a×____)×c=a×(____×____)我们学习了乘法运算律,这节课我们一起运用乘法运算律进行计算。二、探索新知1、学习例3。出示例3,算一算,议一议。61×25×48×9×125教师:观察每个算式中的因数之间有什么特点?可以运用运算律进行简便计算吗?(学生观察思考,独立计算)全班汇报,教师板书:(1)①61×25×4=61×100=6100②61×25×4=1525×4=6100③……(2)①8×9×125=72×125=9000②8×9×125=9×1000=9000③…… 小组讨论:每题都有几种算法,你认为哪种算法最简便?为什么?运用乘法交换律和结合律进行简便计算时要注意什么?全班交流汇报。教师小结:运用乘法运算律进行简便计算,它的核心就是“凑整”。往往可以把两个或几个数结合在一起乘起来得到整十、整百……有时还可能需要把一个数分解成两个数,再与另外的数结合相乘得到整十数、整百数……总之使计算变得简单。这里的设计是让学生讨论一题的多种计算方法,你认为哪种比较简便,为什么简便,来获得简便计算的感受,是可取的。]三、课堂活动1、课堂活动第2题:先让学生说一说怎样计算简便,并说出依据,再完成在课本上。2、练习四第3题:学生独立完成(连线)后反馈。
3、练习四第5题。怎样简便就怎样算,学生独立完成,老师指名板演。集体订正。4、练习四第11题。学生观察图中信息,然后抽学生提出问题,教师板演在黑板上。其余学生判断。最后让学生独立解决在课堂作业本上,不得少于3个问题。注意:随时提醒学生观察算式中数据的特点,并应用简便方法进行计算。
四、拓展练习思考题:
引导学生抓住突破点:一是1~9各数字在算式中只出现一次;二是算式中积的个位数字是2。根据这两个信息可以想到两个因数个位上的数字只能分别是3和4,继续分析便可解决此题。
五、课堂作业
练习四第6、7、8题。
六、课堂小结
这节课主要学习了什么知识?你还有什么问题吗?教学反思: 第五课时乘法运算律及简便运算(三)
【教学内容】课本第16页例4,课堂活动第1题和练习五第1、2题。
【教学目标】
1、经历在解决数学问题的情境中探索发现乘法分配律的过程。
2、理解并掌握乘法分配律,并能运用乘法运算律进行简便计算。3、在解决数学问题中培养学生一题多解的发散思维能力,通过发现运算律培养探索、概括能力。【教学重、难点】探索发现乘法分配律,理解并能运用乘法运算律进行简便计算;对乘法分配律进行正向和逆向的理解。
【教学过程】
一、创设情景,探索新知出示例4。
(1)出示问题情景,解决问题。你从情景图中获取了哪些数学信息?要解决“一共需要多少元?”该怎样列式计算?(学生口答信息,然后独立列式计算)全班汇报解题思路和方法。教师板书:(40+20)×1440×14+20×14=60×14=560+280=840(元)=840(元)
(2)比较两种解法,发现两种解法的相同点和不同点,并举出生活中的类似例子。(小组讨论,全班交流)教师板书:(40+20)×14=40×14+20×14
(3)在计算中比较并发现乘法分配律。算一算,比一比。(3+2)×35=3×35+2×353×(4+6)=3×4+3×6(13+12)×4=13×4+12×4比较每排的两个算式有什么关系?每排的两个算式的计算结果相等吗? 学生独立计算验证自己的猜想。(小组讨论,全班交流)板书:(3+2)×35=3×35+2×353×(4+6)=3×4+3×6(13+12)×4=13×4+12×4教师:谁还能举出符合这个规律的例子?(学生举例)教师:谁能用自己的话来表达这几组算式所反映的规律?(学生回答)教师小结:两个数的和与一个数相乘,可以把这两个数分别与这个数相乘,再将两个积相加,这叫乘法分配律。
(4)如果用a,b,c表示3个数,可以用怎样的式子表示乘法分配律呢?(学生独立写出,然后全班交流)教师整理并板书:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c
二、课堂活动
1、课堂活动第1题:先让学生独立算一算,对有困难的也可先在小组中议一议。最后让学生说一说自己是怎么算的?能说明乘法分配律吗?
2、练习五中第1题:学生独立做在书上,订正时让学生说说运用的是什么运算律?先做,再议一议,最后与全班同学交流。
三、课堂小结
这节课我们学习了什么?你都有些什么收获?你还有什么问题?教学反思:第六课时乘法运算律及简便运算(四)
《运算律》教案8
教学内容
义务教育课程标准实验教科书(西南师大版)四年级(下)第23页例5,练习五第2~8题和思考题。
教学目标
1?进一步理解并掌握乘法分配律,并能运用乘法运算律进行简便计算。
2?运用乘法运算律解决简单的实际问题。
3?培养学生灵活运用所学知识解决实际问题的能力。
教学重、难点
灵活运用乘法运算律进行简便计算。
教学过程
一、复习旧知,引入新课
1.上节课学习了乘法分配律,谁能分别用自己的话和字母表述乘法分配律?
2.填空。
25×6+75×6=
我们这节课一起来学习用乘法分配律进行简便计算。
二、学习新知
1.出示例5
用简便方法计算102×45,32×27+32×73。
教师:观察每个算式中的因数有什么特点?可以运用乘法运算律进行简便计算吗?(学生观察思考,独立尝试计算)
学生计算后汇报,教师板书如下:
(1)①102×4
②102×45
③……=(100+2)×45 =102×(40+5)
=100×45+2×45 =102×40+102×5
=4500+90 =4080+510
=4590 =4590
(2)①32×27+32×73
②32×27+32×73
③……=32×(27+73) =864+2336
=32×100=3200 =3200
小组讨论(小组讨论后,在全班交流)
(1)你认为每个题的哪种算法最简便?为什么?这种简便算法的依据是什么?
(2)运用乘法分配律进行简便计算时,要注意什么?
教师在学生讨论交流的'基础上,小结运用乘法分配律进行简便计算的方法。
三、课堂练习
1.基本练习
(1)练习五第5题:学生独立完成口算题。
(2)填空。
巩固练习
(1)练习五第7题:学生独立完成,再集体订正。
(2)练习五第4题:学生根据题中所呈现的信息独立解决问题,然后思考还能提出哪些数学问题?
(3)练习五第8题:学生根据情景图中所呈现的信息先独立思考解决,对有困难的可在小组中讨论解决。
全班交流,板演在黑板上,并说出自己解题的思路。
3.发展练习
练习五思考题,独立思考,有困难的先在小组中商量解决,最后全班反馈,要求说出思考过程。
4.课堂作业
练习五第2,3,6题。
四、课堂小结
今天的学习你都有些什么收获?你还有什么问题?
《运算律》教案9
教学目标:
1.结合具体事例,经历运用乘法运算定律计算并解答简单实际问题的过程。
2.能灵活运用乘法的运算定律进行简便计算,体验计算方法的多样化。
3.在选择合理的灵活的方法进行计算的过程中,体验乘法运算定律在解决实际问题中的价值,将数学与生活紧密联系起来。
教学重点:
1.体验算法的多样性,并能选择最简捷最适合的解题方法。
2.体验运用乘法运算定律解决实际问题的简便性。
教学难点:
运用乘法运算定律解决简单问题的过程。
教学过程:
一、情景导入
以一首诗开启今天的数学课堂,《钱塘湖春行》,教师配乐朗诵。
读完此诗,你有没有感受到春的气息,春天青山绿水、鸟语花香,到处一派生机勃勃的景象,春天也是郊游的季节。这个春天,我们去了科技馆与人民公园,我们马上还要去银川研学旅行了,在去之前我们先解决一些隐藏在这次旅行中的数学问题,你有信心来解决吗?
问题一:
1.出示例题:四年级有102名师生要去研学旅行,平均每人的费用25元,那么师生这次旅行共需要多少钱?
①指明学生读题,明确已知条件和所求问题,询问怎么列式?为什么用乘法?②要求:学生独立计算之后,再与四人小组交流算法。
③师巡视收集不同算法。(关注运用乘法运算定律进行计算的情况。)
2.展示交流算法。(算法预设如下)
A:笔算
1 0 2
× 2 5
5 1 0
2 0 4
2 5 5 0
B:口算
100×25=2500(元)
2×25=50(元)
2500+50=2550(元)
C:乘法结合律
25×102
=25×(2×51)
=25×2×51
=50×51
=2550(元)
D:乘法结合律
102×25
=102×(5×5)
=102×5×5
=510×5
=2550(元)
E:乘法分配律
102×25
=(100+2)×25
=100×25+2×25
=2500+50
=2550(元)
通过刚才咱们用多种方法求解102×25我们发现,哪种方法更简便?为什么?(学生自由发言,阐明理由)
教师板书102×25
=(100+2)×25
=100×25+2×25
=2500+50
=2550(元)
答;师生这次旅行共需要2550元钱。
4.揭示课题,今天我们就来学习用乘法简便运算来解决生活中的数学问题。
5.如果我把题中条件稍加改动,你还会不会算?
师改题104人,,每人25元。学生口答,教师板书
6.总结:一个接近整百却大于整百的数乘另一个数,我们可以把它看成整百数加一个数的和乘另一个数。再利用乘法分配律来计算,从而让计算变得更加简便。
问题二:
我们继续往下研究。
1.在102人中有4位是教师,学生自由98人,这些学生应交多少钱?指名读题列式。
要求:先独立完成,再同桌交流算法。
展示交流算法。(算法预设)
98×25
=(100-2)×25
=100×25-2×25
=2500-50
=2450(元)
答;这些学生应交2450元钱。
3.如果我把题中条件稍加改动,你还会不会算?
99人是学生,每人28元,一共多少钱?学生口答,教师板书。
4.总结:一个接近整百却小于整百的数乘另一个数,我们可以把它看成整百数减一个数的差乘另一个数。再利用乘法分配律来计算,从而让计算变得更加简便。
问题三:
继续往下挑战
1.去春游的学生中有36人是四年级(2)班的学生,四年级(2)班的学生应交多少钱?
要求:学生自由读题,独立完成。
2.集体交流展示算法。(算法预设)
A:36×25
=(4×9)×25
=9×(4×25)
=9×100
=900(元)
B:36×25
=(40-4)×25
=40×25-4×25
=1000-100
=900(元)
3.通过刚才咱们用多种方法求解36×25我们发现,哪种方法更简便?为什么?(学生自由发言,阐明理由)教师板书
36×25
=(4×9)×25
=9×(4×25)
=9×100
=900(元)
答:四(1)班学生应900元钱。
4.总结:如果是特殊数25乘另一个数,可以把另一个数拆分成4乘几的形式,再利用乘法结合律来计算,从而让计算变得更加简便。
二、巩固反思
通过刚才的'学习,老师想知道大家为什么能算的又快又准确,有没有什么技巧与方法,能跟老师分享一下吗?
学生自由发言
总结:①两个数相乘,如果一个因数是接近整十、整百或整千的数,可以将这个数写成整十、整百或整千的数加或减一个数的形式,再运用乘法分配律进行计算,会使计算简便。
②如果是特殊数25(或125等)乘另一个数,可以把另一个数拆分成4乘几(或8乘几)的形式,再运用乘法结合律进行计算,会使计算简便。
一次简单的出游,竟然隐含着这么多的数学问题,但都被我们的数学小能手们一一解决,大家说学好数学有没有必要?学好数学可以解决我们生活中的很多问题。
三、课堂小结
这节课你有什么收获?
四、板书设计
乘法简便运算
资源文件列表:
《运算律》教案10
完成本节课《有理数加法》的课堂教学后,回首反思,金沙并存,现将我对本节课的反思情况概述如下:
亮点有四:
1、课题的引入。这一环节,我采取提问的方式,由学生小学阶段所学过的自然数的加法开始,提问学生:当初中阶段引入负数以后,如果你是教材的编写者,你会安排哪几种形式的加法?这样学生很快会想到“正+正、正+负、负+正、负+负、0+正、0+负”几种形式,而后自然地提出:“同号相加、异号相加、0加任何数”这三种类型,进一步提升了学生的分类思想;
2、尝试探究的设置。这一环节,我才用借助数轴导学案自主尝试的形式,点在数轴上的移动学生已经学过,设计问题时涉及到向左、向右移动问题学生自然会联系到数轴,这样根据题意列出式子,借助数轴很快的就能得出运算结果。既充分发挥了学生的主动性、提高了学生的参与度,同时又让学生认识到数学知识的内在联系,知识迁移和划归借鉴也是学习数学的一种很好的方法。
3、有理数加法法则的得出。这一环节,我先将学生尝试探究中的几个式子以及结果全部罗列出来,让学生观察形式特征,猜想结果与形式之间的关系,大胆提出想法,然后举例用数轴加以验证,整个环节中,我只负责帮学生把想说的话板书出来,这极大地提升了学生数学学习兴趣,又让学生感受到了数学当中好多法则规律,都是经过观察、猜想、验证、归纳而得出的,同时又提升了学生数学学习的自信心,也得到了学习数学的一个一般方法。
四是,在对本节课的小结处理,小结由学生自己总结,在学生总结后加以强调,为确保运算结果的正确性,运算中应先确定符号,再计算结果。这样就把围绕初中学生的一个大难题“符号问题”加以弱化,已给学生指出了一个简单检验的方法。
金无足赤,课亦不可能绝对完美,换句话说根本就没有完美的'课。闪过亮点之后,需要改进的有四,如:
1、考虑上课时限问题,没有深入展开,致使有部分学生思维以及理解没有跟上,从课后的练习反映出有几个学生运算中还是存在问题。
2、口算展示的时候,没有进行象开火车的形式让更多的学生都出来展示,而是让几个人代劳了。
3、个人上课有些仪态上有些随性,这样会让学生觉得不严谨,可能会滋生学生不良的行为习惯。
4、板书上有些凌乱,缺乏合理规划。
记得有位导演在问到哪部作品拍得最好时,他说道:“下一部”。任何事物都是“玉”与“瑕”共存的,只有经过了,再回首,才会发现“瑕“于何处,我们要做的不是掩“瑕”,而是要借“瑕”去“瑕”,避免同样的“瑕”再次出现,只有这样,才能取得进步和提升。“艺海无涯,术无止境”只有不断的总结反思才能有更大的提升!
《运算律》教案11
教学目标:
1、知道整数加法的交换律,结合律对于小数加法同样适用的,能运用加法的交换律、结合律进行小数加减法的简算。
2、培养学生的计算能力,提高计算的技巧,发展学生的推理能力。
3、培养学生做事认真,讲求方法,注重实效。
教学重点:整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便。
教学难点:整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便。
教学过程:
一、引入
口算(小组竞赛)
前两组口算,体会凑整的好处;
后两组口算,体会加法运算律给计算带来的方便。
二、探究
1、出示例3
这四种文具,小华各买了一件,他一共用了多少元?
谈话:你会计算这道题吗?请你独立列式计算。
学生独立计算,注意选择学生采用的不同的方法,并展示。
比较:
1)观察这两种算法,你有什么发现?
2)你认为哪种算法简便?
提问用第二种方法的学生:你是怎么想到用这个方法的?
谈话:这种方法的使用,使你想到了整数加法的哪些运算律?
小结:整数加法的运算定律,对于小数加法也同样适用。应用加法运算定律可以使一些小数加法的运算简便。这就是我们今天研究的内容。
2、提问:我们以前学习过哪些加法的运算定律?这里的字母a、b、c可以表示怎样的数?
指出:因为整数加法运算定律对于小数加法同样适用,所以这些字母公式里字母所表示的数的范围既包括整数,也包括小数。
三、练习
1、完成“练一练”的第1题。
集体交流,注意说一说使用的运算律。
补充一题,问,这题为什么不可以用简便方法?
提问:我们在使用运算律进行简便运算的时候,要注意些什么?
一审:审清题目(特别是运算符号)。
二看:观察数字特征,选择比较简便的算法。
三算:认真计算。
四查:查运算顺序;查数字;查每一步的计算。
2、完成第2题。
提问:求接力赛的总成绩,就是求什么?
学生独立解决。
小结:看来加法运算律用到小数加法里,果然很简便。
3、完成练习九的第2题
谈话:下面进行个比赛,请一二两组同学计算第一题,三四两组的同学计算第二题。
这两题做完,让你联想到了什么?
你知道整数减法的性质是什么吗?
你掌握了这个性质后,这一组题,你会选择做哪题?
小结:整数减法的运算性质,对小数减法也同样适用。
4、判断下列算式,能简便运算的,在()里打√,不能简便运算的打×。
2.7+6.6+3.4()
5.08-0.8-4.2()
7.5-3.87+2.13()
6.02+4.5+0.98()
6.17+28+3.2()
6.59+9.32-2.59()
小结:简便运算的时候,是不是光看数字就可以了?
5、填数,使计算简便:
32.54+2.75+()
四、课堂作业:
这节课你有哪些收获?
五、总结
完成练习九的3~5题
教学反思:
本节课是学生在已有的整数加法运算率的`计算的基础上学习的。本节课的重点是顺利将加法(及减法的性质)的运算律迁移到小数加(减)法的运算中来,使得计算简便,难点是知识延伸中,学生的再建构。对于加法的结合律和加法交换律,学生已有基础,因此我本节课放手让学生自己去探索,从探索中寻求答案,让学生在探索的过程中既能学到知识,又能在探索中学会技能,避免了学习的单一性。
在教学本课时,我根据学生的年龄特点和迁移的认知规律,创设贴近儿童生活的问题情境,为学生提供丰富的表象。采用的教学方法主要是:
1、竞赛。本课属于计算课,本身让人觉得枯燥无味、学生缺乏兴趣。因此在口算题目的处理中改为小组竞赛,希望以此为切入点,调动学生学习积极性,同时培养学生合作、竞争意识。
2、自主探究学习的方法。教学时,我创设了小华买文具的生活情景,让学生帮助他解决问题,使学生感受到被信任、能做事情的快乐,不仅实现了角色转换,唤起学生的主角意识,而且让学生享受到助人的乐趣。计算时让学生自行探究,从比较中得到简便算法,这样使学生体会到数学来源于生活,又应用于生活。
3、设计适合学生发展的题目,在本节课中,我另外编排了一些调动学生智力发展的问题,让学生有一个质的提升。
在教学中也出现了很多不足,比如,板书受学生影响,没有列出更合理的,导致板书不能对学生起到引导和潜移默化的作用。几处重要小结也没有做到水到渠成,显得不自然。
《运算律》教案12
【教学内容】教材第64页
【教学目标】
⒈ 使学生进一步掌握加法乘法的一些简便计算的方法,能合理灵活的进行计算。
⒉ 进一步提高学生的计算能力和分析能力。
【教学过程】
一、补充:
前面我们分别学习了加法、乘法的交换律和结合律,想一想,会不会有减法和除法的交换律和结合律呢?为什么?(估计学生会举例说明)
那减法中会有哪些运算规律呢?
比如说:a-b-c,它可以等于什么呢?
a-(b+c)或a-c-b
举例说说我们情况下可以分别用这两种方法:
348-57-43、348-48-57
A-b+c可以等于什么呢?也请举例说明。
A÷b÷c、a×b÷c、a÷b×c呢?
指出:这些变化,都可以使计算简便,要灵活加以应用
继续补充:32×25
这题只有2个乘数,那它又可以怎么简便计算呢?
在学生交流的基础上,强调:在乘法中,25最喜欢4,所以可以把32分成4×8,写成:8×(4×25)=8×100=800
二、完成p.63的`练习
1、第5题,要求学生读题后列式,分别算出苹果和梨各有多少千克?
在解答这题的时候,要提醒学生列式的时候还是要注意算式每一步的解答是否有意义?正确列完算式后再考虑能否简便计算
2、第7题,填写表格,然后再说说表中的哪个乘数变化了,是怎样变化的?积又是怎样变化的?
要注意引导学生说完整的句子进行表达
3、第8题,先算一算,再比一比每组中哪道算式的计算比较简便
估计学生都会直接选择下面的题进行计算。
算完后追问:45×12和36×15,这两个算式的结果都是540,但如果只看算式你能知道它们的结果是一样的吗?想一想,能不能把算式拆开后再比较呢?
(比如:3×15×12=3×12×15)指出:这里其实也应用了乘法的运算规律
4、第9题,怎样算简便就怎样算
要求学生在自己的本子上能写出完整的解答过程
三、完成p.64
1、口算
学生做完后校对得数
2、第5题,算出表中每个月几种费用的合计数。要求学生算之前都要先观察,看一下能否简便计算。算完后再交流方法及结果
四、布置作业:
《运算律》教案13
一、素材的选取。
本单元我们选取的素材是高速运转的济南长途汽车总站和高速运转的济青高速,选取这个素材原因主要有以下三点:
(1)济南长途汽车总站,连续多年创下旅客发送量、发送班次和售票收入三项全国第一,被称为“中华第一站”。 据说济南长途汽车站占地110亩,日客流量4万多,客票年收入达到4—5亿元。1999年被中国企业联合会、中国企业家协会授予“中华第一站”称号,这个荣誉一直保持到今天。
(2)山东的高速公路全国闻名。 说起山东的高速公路来,在全国是的,俗话说得好“要想富,先修路”。据有关经济专家研究,一个国家的富裕程度与其公路的优劣,成正相关。可见,我省经济之所以能够高度发展,寻其原因,不言而喻。
(3)以比较真实的数据为素材,体现了数学的价值。 本单元提供的数据与第一单元一样,都是一些真实的数据。旨在说明交通生活中也实实在在存在着数学,数学无处不在。
二、本单元的情景串。
本单元有2个信息窗。
依次是: 单元知识分析 单元教材解读 信息窗1的解读 已学的知识 乘法的认识 整数的四则混合运算 (三下52×47-50×47 用字母表示数(四上1) 加法运算律 (四上1) 一般行程问题 (二下p105,三上p76,p78,三下5)路程、时间、速度三者 数量关系。 本单元新学知识 乘法结合律 乘法交换律(乘除法各部分之间的关系) 乘法分配律(相遇问题) 运用乘法运算律进行简便运算。 后续学习的知识 乘法运算律在小数和分数计算中的推广 用方程解行程问题 (山东版有关行程问题的学习都安排在简易方程单元。) 高速运转的长途汽车站 高速运转的济青高速
1、情景图的.解读。
此信息窗的题目为“高速运转的长途汽车站”。情景图上呈现的是一幅济南长途汽车总站的真实照片。照片的下面附有一张20xx年济南长途汽车总站大巴车中巴日发送旅客情况统计表。
2、情景图中的信息。
是2组数据:
(1)平均每天发车的数量
(2)平均每车次的乘客人数。
3、例题的设置与功能。
本信息窗一共有3个例题,包含的知识点分别是:
(1)乘法结合律。
(2)乘法交换律。
(3)运用乘法交换律和结合律进行简便运算。 乘除法各部分的关系。(第六题)
《运算律》教案14
【教学内容】教材第61~62页
【教学目标】
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验
【教学重点】
理解并掌握乘法交换律和结合律
【教学难点】
懂得乘法交换律和结合律的算理,会用字母表示
【教学过程】
一、学习新课:
1、学习乘法交换律:
演示例题图,谁能用数学语言说说图意?(一组5人踢毽子,3组一共有多少人?)
把算式写在自己的本子上,全班交流:(1)3×5=15(人) (2)5×3=15(人)
观察这两个算式,有什么相同和不同的地方?
(乘数相同,位置不同,积相等)
因为积相等,我们就可以把这两个算式合写成一个等式,谁能把它写出来?
(3×5=5×3)
读一读,这个等式,问:类似的等式你还能说几个吗?
……
说得完吗?那你有什么好办法?
板书:a×b=b×a
指出:这是乘法运算中的一个规律,知道叫什么吗?(板书:乘法交换律)
2、学习乘法结合律:
演示例题:华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加。一共有多少人参加比赛?
请学生独立列式解答。全班交流,可能有的结果:
(1)6×5×23 (2)5×23×6
=30×23 =115×6
=690(人) =690(人)
(3)6×(5×23) (4)6×23×5
=6×115 =138×5
=690(人) =690(人)
评讲这几种方法:
方法一先算的是多少个班级,再算全部
方法二先算的是一个年级参加的人数,再算全部
方法三也是先算多少个班级,再算全部
方法四先算6×23意义不好说,所以不提倡
比较方法一和方法二,这两个算式之间有什么联系呢?(交换了6和23的位置,……用到了刚学的乘法交换律)
比较方法一和方法三,它们有什么联系呢?(三个乘数没变,位置没变,但乘的顺序变了,积没变。)
想一想,这又是乘法中的什么规律呢?
随学生回答板书:乘法结合律
谁能用字母来表示这一规律?a×b×c=a×(b×c)
3、学习试一试
你能用简便方法计算吗?
(1)23×15×2 (2)5×37×2
学生先独立计算,指名板演。
讲评时注意书写的`规范,并要学生能说出各是用了什么运算律?
二、完成想想做做的部分练习
1、先填空,再想想应用了什么运算律(题略)
注意最后一题:13跑到了前面,那肯定是用到了乘法交换律,本来是没有括号的,那就是先前面的,后面的算式在后面多了个括号,那就变成了先算后面的,这就用到了乘法结合律
2、比较上下两题,你更愿意算哪题?算一算
3、你能很快说出每束气球上三个数连乘的积吗?
先是同桌互说,再是指名说。其中最后一束,要让学生比较多种方法都比较简便的时候,选择最简便的方法
三、布置作业:
第62页第4、6题
《运算律》教案15
教学内容:苏教版四年级上册P:59—60页
教学目标:
1、让学生经历运用加法运算律进行简便计算的探索过程,掌握其计算方法,会正确地进行简便计算。
2、在教学过程中,培养学生思维的灵活性,培养学生初步的逻辑思维能力。
3、让学生在学习过程中进一步体验数学与生活的联系,感受简便计算的乐趣,培养学习数学的积极情感。
教学重点:运用加法运算律进行简便计算
教具准备:课件
教学过程:
一、复习铺垫
1、从课题出发:“加法运算律”是哪些运算律?说出相应的字母表达式及其意思
板书:a+b=b+a (a+b)+c=a+(b+c)
2、抢答小比赛:比比谁最快说出三角形角上三个数的和。
并说说先算什么,体会“凑”的思想。(板书:凑)
3、举例:46
师:你能说出哪些数和46凑成整十,整百……?
师:看来连加中也藏着不少学问,可不是那么简单,今天我们就来研究一下如何使运用加法运算律使计算更加简便。
[复习分为两部分,一是运算律,二是渗透简便运算中“凑”的思想。抢答比赛可以激活学生的已有经验,从而带动新知学习,又可以调动学生的积极性,使课堂一开始能有一个比较活跃的氛围。]
二、学习例题
1、出示例题图
师:谁能用自己的话将题意说一遍?
师:你会列式解答吗?写在练习本上。
交流各自算法并相应板书:
29+46+54 29+46+54
=75+54 =29+(46+54)
=129(人) =29+100
=129(人)
师:比较这两种方法,你更喜欢哪一种,为什么?(再次强调“凑”)
运用了什么运算律?
优化算法,体验简便运算的优点
2、试一试
出示题目:69+75+25 78+(47+22)
师:先观察,怎样才能简便运算?
师:你想将谁和谁凑在一起?怎样才能凑在一起?运用了什么运算律?
谁能具体地说一说?谁再来说一说?
着重讲第二题的运算律的应用:先运用加法交换律,将78和22靠近,再运用加法结合律,使78和22先算。
师:请在练习本上写出过程。
展示交流
[试一试,先让学生说,再完成在练习本上。主要是想通过说,调动学生的思考积极性。而不总是停留在“完成作业”的层次上。在明确了每一步的.意义及所用的运算律的基础之上,再进行练习。]
三、练习巩固
1、“想想做做”第1题
师:比一比,看谁能很快说出每组气球上三个数的和?
调换书上气球的顺序:64 19 36 38 18 32 79 59 21
师:你是先算谁和谁?为什么?
38 18 32 师:你有不一样的想法吗?
79 59 21师:你有不一样的想法吗?哪一种更好呢?(当方法多种时,选择最简便的方法)
拓展:361+72+439+128
师:这一题,你想如何解决呢?
2、“想想做做”第4题
师:打开书,完成第4题。只观察,用小弧线将先算的两个数连起来,比比哪组完成得又好又快。
独立完成后交流
3、“想想做做”第3题
A:出示:175+201
师:这一题你能简便运算吗?
只有两个数,如何凑呢?
换个思路,可不可以先“拆”?
拆谁?
出示:175+199
师:你想对哪个数动个小手术?
出示:238+402 354+102 105+216
354+298 204+499 216+99 (对书上第3题稍加改动)
师:同桌先互相说一说,你打算对每题中哪个数动手术,怎么动?哪一种方式更好?(体会对接近整百的数动手术的优点)
分组完成在练习本上
B:拓展:361+72+439+128
师:这一题,共四个数,你又想如何解决呢?
C:拓展:1+2+3+4+……+100
师:一百个数呢?
讲数学王子高斯7岁时运用简便运算计算1加到100的故事
D:(100+a)+(100+a)+(200+b)+(200-b)
师:你能迅速说出这一题的结果吗?
4、“想想做做”第6题
师:独立完成第6题,并思考:你有什么发现?
交流各自的发现:
1、加数都是200,另一个加数越大,和越大
被减数都是200,减数越大,差越小
2、把两个得数加起来,结果都是400
把两个结果相减,结果分别是20、40、60……
[在练习的过程中,着重于让学生通过“先观察不动笔”“同桌相互说”等方式,使学生的思维动起来。而不总是“笔动”。用“思维的动”代替“笔动”,并用语言将思维的过程表述出来,从多方面促进学生的思考。]
四、总结
师:这节课你有哪些收获?
布置课堂练习:“想想做做”第2题,第5题
20xx-11-13
教学反思:这一节是一人一课。课前作了比较充分的准备,本课结束之后,感受比较深的有这样几点:
1课堂语言要多“磨”
数学课堂的语言以科学,简洁,严谨为第一要义。另外还要富有一定的感情色彩和启发性。哪怕只是一句小小的表扬,一个过渡,一个追问,都要做到言而不废。
《张兴华和他的弟子们的座谈会——我们的成长经历》中就提到了对于课堂语言的磨练。徐斌老师为了将自己的课堂语言更能为低年级学生所接受,坚持每天听鞠萍,孙敬修的童话朗读磁带,我们又为何不可在课前将课堂上所讲的每句话磨上几遍呢?
2教案设计要多“思”
在教案设计过程中,要学会多向自己提问:这个环节的目的是什么?一定要有吗?有没有更好的?明确每个环节的作用,杜绝课堂时间浪费在无用的环节的现象,使每个环节都能充分发挥作用。可是启发,可是新授,可是练习……
在教案设计的过程中,另外还要多从学生的角度来思考。要让每一个设计能调动学生的积极性,启发学生的思考。而不仅仅让教案成为一纸空文。
3学生思维要多“动”
数学是思维的运动。而在教学过程中,往往会发现许多学生仅仅停留于完成作业的层次上,因为思维过程不是一个可以量化衡量的物体。所以只有通过学生的说,通过学生的看来体现。语言是思维的外壳,语言表述得清晰,完整,同样能反映一个学生的思维过程。
另外在设计练习过程中,我强调学生不动笔,让学生先观察思考,再讨论。观察也是一种帮助学生思考的方式。而许多学生并未意识到观察的重要性,也未曾认真观察过,以致在作业中常有题目未读,或读不懂就下笔的情形,因此在平时的教学过程中,要学会让学生多观察,以察促思。
【《运算律》教案】相关文章:
《运算律》教案02-25
《运算律》教案05-29
《运算律》教案及反思08-26
《运算律》教案15篇03-05
《运算律》教案(15篇)03-05
《加法运算律》教学反思02-13
四年级运算律教案03-25
运算的教案08-26
混合运算教案04-12
混合运算教案02-22