当前位置:好文网>实用文>教案>《有理数》教案设计

《有理数》教案设计

时间:2024-10-26 16:27:27 教案 我要投稿
  • 相关推荐

《有理数》教案设计

  作为一名为他人授业解惑的教育工作者,编写教案是必不可少的,教案是备课向课堂教学转化的关节点。怎样写教案才更能起到其作用呢?以下是小编帮大家整理的《有理数》教案设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《有理数》教案设计

《有理数》教案设计1

  教学目标

  1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

  2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

  3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

  4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

  教学建议

  (一)重点、难点分析

  本节的教学重点是能够熟练进行有理数的.乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

  本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

  (二)知识结构

  (三)教法建议

  1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

  2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

  3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

  4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

  5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

  6.如果因数是带分数,一般要将它化为假分数,以便于约分。

《有理数》教案设计2

  一、背景知识

  《有理数》选自浙江版《义务教育课程标准实验教科书·数学·七年级上册》第一章《从自然数到有理数》中的第二节,这一章是开启整个初中阶段代数学习的大门。《有理数》是本章的第二节。本节内容让学生在现实的情境中理解负数的引入确实是实际生活的需要,感受到有理数应用的广泛性,是在小学学习自然数和分数之后,数的概念的第一次扩充,是自然数和分数到有理数的衔接与过渡,并且是以后学习数轴、绝对值及有理数运算的基础。

  二、教学目标

  1、知识目标:理解有理数产生的必然性、合理性;会判断一个数是正数还是负数,能灵活运用正、负数表示生活中具有相反意义的量;会将有理数从不同的角度进行分类。

  2、过程与方法:利用学生身边熟悉的事物引入负数、学习有理数;运用有理数表示现实生活问题中的量;让学生经历有理数概念的形成及运用过程,领会分析、总结的方法。

  3、情感与能力目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过实际问题的解决和从不同角度对有理数分类,可提高学生应用数学能力和培养学生的分类思想。

  三、教学重点、难点

  重点:能应用正、负数表示具有相反意义的量和对有理数进行合理的分类。

  难点:用有理数表示实际生活中的量。

  四、教学设计

  (一)创设情境 探求新知

  如图表示某一天我国5个城市的最低气温。

  请同学们合作讨论下列问题:

  1、-20℃、-10℃、5℃、0℃、10℃ 这几个量分别表示什么?

  2、你还在哪些地方见到过用带有“-”号的数来表示某一种量,请讲出来。

  把学生讲出的较恰当的量写到黑板上,再引导学生把与之相对的量分别写在后边,如:零下20℃——零上10℃, 降低5米——升高8米, 支出100元——收入500元。指出这样的量就是具有相反意义的量,并从以下方面加以理解。

  (1)具有相反意义的量是:意义相反,与值无关。

  (2)区分“意义相反”与“意义不同”。

  反问学生:以上具有相反意义的量能用我们学过的自然数和分数表示出来吗?

  显然是不能的。为了解决这样的实际问题,我们需要引进一种新的数——负数。

  我们把一种意义的量(如零上)规定为正,用学过的数(零除外)来表示,这样的数叫做正数,正数前面可以放上正号“+”来表示(常省略不写),;把另一种与之意义相反的量规定负,用学过的数(零除外)前面放上负号“-”来表示,这样的数叫做负数(负号不能省略)。

  如:“+2”读做“正2”、“-3.3”读做“负3.3”等。

  这样我们学过的数中又增加了新的数——负整数和负分数;相应地我们学过的自然数和分数分别称为正整数和正分数。

  (二)运用新知 体验成功

  填空:

  1)规定盈利为正,某公司去年亏损了2.5万元,记做__________万元,今年盈利了3.2万元,记做__________万元;

  2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔__________米;吐鲁番盆地最低处低于海平面155米,记做海拔__________米;

  3)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。汽车向北行驶75km,记做________km(或_______km),汽车向南行驶100km,记做________km;

  4)下降米记做米,则上升米记做__________米;

  5)如果向银行存入50元记为50元,那么-30.50元表示__________;

  6)规定增加的百分比为正,增加25%记做__________,-12%表示__________.

  利用第3)题说明在表示具有相反意义的量时,把哪一种意义的量规定为正,是相对的'例如我们可以把向南100米记做+100km,那么向北记做-75km.但习惯上,人们常把上升、运进、零上、增加、收入等规定为正。

  (请同学独立完成,然后同桌同学相互评价。)

  (三) 师生互动,继续探究

  (合作学习)读一读这些数0,880,-20xx,+123,-233,-2.5,+3.2,+918,-155,+75,-100,25%,-12%,请根据你认定的数的特征进行分类,并说出分类的特征。

  让学生四人小组合作讨论完成。

  估计可能出现的正确结论有:

  ;

  ;

  对于较为正确的分类,并能说出特征的都将给予肯定,重视个体差异,体现多元评价的思想,发挥评价的激励作用,保护学生的自尊心,增强学生的自信心.然后教师给出规范的分类:

  正整数、零和负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

  说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,零既不是正数,也不是负数.

  (四) 分层练习,巩固提高

  为了使学生实现从掌握知识到运用知识的转化,使知识教育与能力培养结合起来,设计分层练习。

  例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?

  -8.4, 22, ,0.33, , -9.

  练习1 判断表中各数属于什么数,在相应的空格内打“√” .

  正整数

  整数

  分数

  正数

  负数

  有理数

  20xx

  √

  √

  √

  √

  -4.9

  0

  -12

  探究活动:

  练习2 如图,两个圈内分别表示所有正数组成的正数集合和所有整数组成的整数集合.请写出3个分别满足下列条件的数:

  1)属于正数集合,但不属于整数集合的数;

  2)属于整数集合,但不属于正数集合的数;

  3)既属于正数集合,又属于整数集合的数.

  将它们分别填入图中适当的位置.你能说出这两个圈的重叠部分表示什么数的集合吗?

  通过多角度的练习,并对典型错误进行讨论与矫正,使学生巩固所学内容,同时完成对新知的迁移。

  (五)概括梳理,形成系统

  采取师生互动的形式完成。即:

  学生谈本节课的收获,教师适当的补充、概括,以本节知识目标的要求进行把关,确保基础知识的当堂落实。

  (六)布置作业

  1、课后作业

  2、设计题可根据自己的喜好和学有余利的同学完成。

《有理数》教案设计3

  一、复习目标:

  (一、)知识目标:1:理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。

  2:掌握四条法则:有理数的加、减、乘、除法则。

  (二、)能力目标:1:会运用三条运算律进行有理数的简便运算。

  2:初步领会有理数的两种方法(有理数大小的比较方法,平方表、立方表的查法)的作用。

  3:进一步体验有理数的一个规定(有理数的混合运算的顺序规定)。

  (三、)德育目标:1:使学生养成“言必有据、做必有理、答必正确”的良好思维习惯。

  2:增进学生的“应用数学知识解决实际问题的数学思想。

  二、重、难点:重点是有理数的混合运算,并能熟练地运用它解决简单的应用题。

  难点是绝对值的应用。

  三、教学过程

  概念的系统化

  负数的概念:初一学生由于受小学算术数的影响,容易遗漏负数,因此,准备以下判断题:

  若一个数的绝对值等于5,则这个数是5。

  若一个数的倒数等于它的本身,则这个数是1。

  若一个数的'平方等于4,则这个数是2 。

  若一个的立方等于它的本身 ,则这个数是0 或1 。

  数“0”的性质:因为0既不是正数,也不是负数,是正数和负数的分界线。给出下面的问题:

  相反数是它本身的数是__。

  绝对值是它本身的数是__。

  正整数次幂是它本身的数是__。

  不为0 的任何有理数的0次幂是__。

  0与任何有理数相乘都得__。

  运算律的应用:正确运用运算律可以使有理数计算简便。

  把正、负数结合在一起;

  把互为相反数结合在一起;

  把同分母分数结合在一起;

  把能凑整、凑0 的两个数结合在一起。

  最容易出错的两个重要性质:绝对值和平方,可以提出以下例题:

  有理数的绝对值总是什么数?

  有理数的平方总是什么数?

  若(a-1)2+(b+2)2=0,则a=__,b=__。

  若|a-b|+|b-3|=0,则______。

  (5)|3-π|+|4–π|的计算结果是__________。

  (6)已知:|x|=3,|y|=2,且xy<0,则x+y=__________。

  (7)实数在数轴上的对应点如图,

  a0b

  化简a+|a+b|-|b–a|=___________。

  (8)如果|x–3|=0,那么x=___________。

  四、典型示例,科学归纳.

  例 1、指出下列各数的相反数、倒数、绝对值,并指出哪两个数互为相反数、互为倒数、绝对值相等;把各数分别表示在数轴上,并填在相应的集合里。

《有理数》教案设计4

  教学目标:

  1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。

  2.已知一个数,会求出它的正整数指数幂,渗透转化思想。

  3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。

  教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。

  教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。

  教学过程设计:

  (一)创设情境,导入新课

  提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?

  a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)

  (多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?

  1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.

  (二)合作交流,解读探究

  一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。

  求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。

  说明:(1)举例94来说明概念及读法。

  (2)一个数可以看作这个数本身的一次方,通常省略指数1不写。

  (3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。

  (4)乘方是一种运算,幂是乘方运算的结果。

  (三)应用迁移,巩固提高

  【例1】(1)(-4)3;(2)(-2)4;(3)-24.

  点拨:(1)计算时仍然是要先确定符号,再确定绝对值。

  (2)注意(-2)4与-24的区别。

  根据有理数的乘法法则得出有理数乘方的符号规律:

  负数的奇次幂是负数,负数的偶次幂是正数;

  正数的任何次幂都是正数,0的任何正整数次幂都是0.

  【例2】计算:

  (1)()3;     (2)(-)3;

  (3)(-)4; (4)-;

  (5)-22×(-3)2; (6)-22+(-3)2.

  (四)总结反思,拓展升华

  1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。

  2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值。

  乘方的含义:(1)表示一种运算;(2)表示运算的`结果。乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂。

  乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数。注意(-a)n与-an及()n与的区别和联系。

  (五)课堂跟踪反馈

  1.课本P42练习第1.2题。

  2.补充练习

  (1)在(-2)6中,指数为,底数为.?

  (2)在-26中,指数为,底数为.?

  (3)若a2=16,则a=    .?

  (4)平方等于本身的数是,立方等于本身的数是.?

  (5)下列说法中正确的是(  )

  A.平方得9的数是3

  B.平方得-9的数是-3

  C.一个数的平方只能是正数

  D.一个数的平方不能是负数

  (6)下列各组数中,不相等的是(  )

  A.(-3)2与-32 B.(-3)2与32

  C.(-2)3与-23 D.|2.3与|-23|

  (7)下列各式中计算不正确的是(  )

  A.(-1)20xx=-1

  B.-12002=1

  C.(-1)2n=1(n为正整数)

  D.(-1)2n+1=-1(n为正整数)

  (8)下列各数表示正数的是(  )

  A.|a+1| B.(a-1)2

  C.-(-a) D.||

  第2课时有理数的混合运算

  教学目标:

  1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序。

  2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律。

  教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算。

  教学难点:有理数的混合运算。

  教学过程:

  一、有理数的混合运算顺序:

  1.先乘方,再乘除,最后加减。

  2.同级运算,从左到右进行。

  3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  【例1】计算:

  (1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);

  (2)1-×[3×(-)2-(-1)4]+÷(-)3.

  强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值。

  【例2】观察下面三行数:

  -2,4,-8,16,-32,64,…;①

  0,6,-6,18,-30,66,…;②

  -1,2,-4,8,-16,32,….③

  (1)第①行数按什么规律排列?

  (2)第②③行数与第①行数分别有什么关系?

  (3)取每行数的第10个数,计算这三个数的和。

  【例3】已知a=-,b=4,求()2--(ab)3+a3b的值。

  二、课堂练习

  1.计算:

  (1)|-|2+(-1)101-×(0.5-)÷;

  (2)1÷(1)×(-)÷(-12);

  (3)(-2)3+3×(-1)2-(-1)4;

  (4)[2-(-)3]-(-)+(-)×(-1)2;

  (5)5÷[-(2-2)]×6.

  2.若|x+2|+(y-3)2=0,求的值。

  3.已知A=a+a2+a3+…+a20xx,若a=1,则A等于多少?若a=-1,则A等于多少?

  三、课时小结

  1.注意有理数的混合运算顺序,要熟练进行有理数混合运算。

《有理数》教案设计5

  教学目的:

  经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。

  教学重点:

  有理数的加法法则

  教学难点:

  异号两数相加的法则

  教学教程:

  一、复习提问:

  1、如果向东走5米记作+5米,那么向

  西走3米记作__.

  2、已知a=-5,b=+3,

  ︱a︳+︱b︱=_

  已知a=-5,b=+3,

  ︱a︱-︱b︱=__

  -1012345678

  二、授新课

  小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的方向为正方向

  提问:这题有几种情况?

  小结:有以下四种情况

  (1)两次都向东走,

  (2)两次都向西走

  (3)先向东走,再向西走

  (4)先向西走,再向东走

  根据小结,我们再分析每一种情况:

  (1)向东走5米,再向东走3米,一共向东走了多少米?

  +5+3(+5)+(+3)=+8

  (2)向西走-5米,再向西走-3米,一共向东走了多少米?

  -5-3(-3)+(-5)=-8

  (3)先向东走5米,再向西走3米,两次一共向东走了多少米?

  +3+5(+5)+(-3)=2

  (4)先向西走5米,再向东走3米,两次一共向东走了多少米?

  -5+3(-5)+(+3)=-2

  下面再看两种特殊情况:

  (5)向东走5米,再向西走5米,两次一共向东走了多少米

  -5+5(+5)+(-5)=0

  (6)向西走5米,再向东走0米,两次一共向东走了多少米?

  -5(-5)+0=-5

  小结:总结前的六种情况:

  同号两数相加:(+5)+(+3)=+8

  (-5)+(-3)=-8

  异号两数相加:(+5)+(-3)=2

  (-5)+(+3)=-2

  (+5)+(-5)=0

  一数与零相加:(-5)+0=-5

  得出结论:有理数加法法则

  1、同号两数相加,取相同的符号,并把绝对值相加

  2、绝对值不等的'异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零

  3、一个数与零相加,仍得这个数

  例如:

  (-4)+(-5)(同号两数相加)

  解:=-()(取相同的符号)

  =-9(并把绝对值相加)

  (-2)+(+6)(绝对值不等的异号两数相加)

  解:=+()(取绝对值较大的符号)

  =+4(用较大的绝对值减去较小的绝对值)

  练习:

  口答:

  1、(-15)+(-32)=

  2、(+10)+(-4)=

  3、7+(-4)=

  4、4+(-4)=

  5、9+(-2)=

  6、(-0.5)+4.4=

  7、(-9)+0=

  8、0+(-3)=

  计算:

  (1)(-3)+(-9)(2)(-1/2)+(+1/3)

  解略

  练习:

  (1)15+(-22)=

  (2)(-13)+(-8)=

  (3)(-0·9)+1·5=

  (4)2·7+(-3·5)=

  (5)1/2+(-2/3)=

  (6)(-1/4)+(-1/3)=

  练习三:

  1、填空:

  (1)+11=27(2)7+=4

  (3)(-9)+=9(4)12+=0

  (5)(-8)+=-15(6)+(-13)=-6

  2、用“<”或“>”号填空:

  (1)如果a>0,b>0,那么a+b0;

  (2)如果a<0,b<0,那么a+b0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b0

  小结:

  1、掌握有理数的加法法则,正确地进

  行加法运算。

  2、两个有理数相加,首先判断加法类

  型,再确定和的符号,最后确定和的绝对值。

  作业:课本第38页2、3

  第40页1、2

《有理数》教案设计6

  目标:

  1、知识与技能

  使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。

  2、过程与方法

  经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。

  重点、难点:

  1、重点:有理数乘法法则。

  2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。

  过程:

  一、创设情景,导入新

  1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?

  乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:

  (-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。

  3、在一条由西向东的笔直的马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以5千米的向西行走,那么经过3小时,她走了多远?

  二、合作交流,解读探究

  1、小学学过的乘法的意义是什么?

  乘法的分配律:a×(b+c)=a×b+a×c

  如果两个数的和为0,那么这两个数 互为相反数 。

  2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)

  3、学生活动:计算3×(-5)+3×5,注意运用简便运算

  通过计算表明3×(-5)与3×5互为相反数,从而有

  3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。

  类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0

  由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。

  4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?

  鼓励学生自己归纳,并用自己的'语舞衫歌扇,并与同伴交流。

  在学生猜测、归纳、交流的过程中及时引导、肯定

  两数相乘,同号得正,异号得负,绝对值相乘。

  任何数与0相乘,积仍为0

  (板书)有理数乘法法则:

  三、应用迁移,巩固提高

  1、计算

  (-5)×(-4) 2×(-3.5) × (-0.75)×0

  (1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。

  (2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。

  2、计算下列各题

  ① (-4)×5×(-0.25) ② ×( )×(-2)

  ③ ×( )×0×( )

  指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。

  教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?

  学生小结后,教师归纳:

  几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0

  练习:本P31练习

  四、总结反思(学生先小结)

  1、有理数乘法法则

  2、有理数乘法的一般步骤是:

  (1)确定积的符号; (2)把绝对值相乘。

  五、作业:P39习题1.5 A组 1、2

《有理数》教案设计7

  把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。(板书课题2.7有理数的加减混合运算

  按教师要求口答并读出结果

  师生共同小结:

  有理数加减法混合运算的题目的步骤为

  1.减法转化成加法;

  2.省略加号括号;

  3.运用加法交换律使同号两数分别相加;

  4.按有理数加法法则计算。

  采用同桌互相测验的方法,以达到纠正错误的目的。针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。

  这两个题目是本节课的重点.采用测验的方式来达到及时反馈。

  归纳小结

  教师提问:

  1.怎样做加减混合运算题目?

  2.省略括号和的形式的两种读法各是什么?

  学生讨论后口答小结不是教师单纯的`总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统。

  布置作业必做题:(一)计算:

  (1)-8+12-16-23;

  (2)- + - -

  (3)-40-28-(-19)+(-24)-(-32);

  (4)-2.7+(-3.2)-(1.8)-2.2;

  (二)选做题:(1)当b>0时,a,a-b,a+b哪个最大,哪个最小? (2)当当b<0时,a,a-b,a+b哪个最大,哪个最小?

  综合考察

  学以致用

  体现分层次教学使不同学生得到不同的发展

  附板书设计:

  2.7有理数的加减混合运算

  例题:计算: 练习处

  1.(+3)-(-9)+(-4)-(+2)

  2. - + - +

  教学反思:

  本节课是一节计算课,是学生们在学习了有理数的加法和减法的基础上进行教学的。通过本节课的学习使学生掌握代数和的概念,知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式即代数和的形式,并能熟练掌握有理数的加减混合运 算及其运算顺序。还要培养学生理解事物发展变化是可以相互转化的辩证唯物主义观点。本节课本着“扎实、有效”的原则,既关注课堂教学的本质,有注重学生能力的培养,且面向全体学生来设计教学。通过教学实践,在本节课上不足的地方是:1.时间掌握的不好有一些前松后紧,以至于后面没有时间来进行本节课的小结,就显得有一些虎头蛇尾了。2、练习的形式还有些单调,如时间富裕还可以准备一些判断练习,把学生在做题时容易出错的地方写出来,让学生来进行判断,用这种方式来进行强化来练习,可以收到比较好的效果。

《有理数》教案设计8

  教学目标

  1、让学生能进行包括小数或分数的有理数的加减混合运算。

  2、让学生进一步体会到有理数减法可以转化为加法进行计算,并体会有理数加减法在实际中的应用。

  教学重点与难点

  重点:有理数加法和减法的混合运算。

  难点:减法统一成加法再写成代数和的形式。

  教学过程

  一、复习引入

  课本P56图是一条河流在枯水期的水位图。此时,桥面距水面的高度为多少米?

  可用两种方法回答这个问题。

  第一个方法:观察画面,从实际问题出发,桥面高出平均水位12.5米,水面又低于平均水位3分米(0.3米),两段高度的和就是桥面距水面的高度。可得算式:12.5+0.3=12.8(米)。

  第二个方法:利用有理数减法法则得算式:

  12.5―(―0.3)=12.8(米)。

  比较两个算式,使学生进一步体会减法可以转化为加法。另外,此题中进行了含有小数的有理数的减法运算。

  二、新课的进行

  某地区一天早晨的气温是-9℃,中午上升了11℃,半夜又下降了6℃。半夜的温度是多少?

  解法一:(-9)+11=2,2+(-6)=-4。

  所以半夜的温度是-4℃。

  解法二:-9+11-6=2-6=-4。所以半夜的温度是-4℃。

  比较以上两种解法,结果是一样的,而解法二中的算式是有理数加减的运算。

  议一议:P57议一议

  通过对此问题的讨论,学生将回顾有理数的加法法则,并用以进行有关小数的运算。计算如下:

  4.5+(-3.2)+1.1+(-1.4)

  =1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)

  此时飞机比飞点高了1千米。

  注意运算顺序是从左到右的计算过程。

  还可以这样计算:4.5-3.2+1.1-1.4

  =1.3+1.1-1.4=2.4-1.4=1(千米)

  此时飞机比飞点高了1千米。

  比较以上两种算法,你发现了什么?

  (1)我们可以把有理数的加减法的混合运算统一成加法运算,使加减法的混合运算化为单一的加法运算。

  (2)有理数的加减混合运算统一为加法运算以后,保留各加数的.性质符号,去掉括号并把加号省略,而形成加减混合运算的简洁的形式。

  例1 计算(P58例1)

  例2 计算:(1) (2)

  解:(1)

  (2)

  三、课堂练习

  1、课本P58随堂练习1、(1),(2),(3)

  2、计算:(1) (2)

  四、课堂小结

  根据有理数的减法法则,我们知道风是有理数的减法,都可以转化为加法,利用有理数的加法法则去运算。因此,我们可以把有理数加减法的混合运算统一成加法以后,可以将算式写成省略括号及前面加号的形式。

  五、作业设计

  1、P58 习题2.7 1,3

《有理数》教案设计9

  一、教学目标

  1.能理解并掌握有理数乘方的概念及意义,并能够正确进行有理数的乘方运算;

  2.通过观察、猜想、实践等数学活动,学生从中提高观察、类比、归纳和计算的能力。

  3.初步了解并体会转化的数学思想,逐步养成观察并发现规律的意识,在相互启发中体验合作学习,树立团队意识。

  二、教学重难点?

  有理数乘方的概念及意义,并正确进行有理数乘方的运算

  有理数乘方的概念及意义,并正确进行有理数乘方的运算

  三、教学策略

  本节课采用“启发引导、动手操作、分析讲解”的教学方式,亲身经历将实际问题抽象成数学模型并进行解释和运用的过程。在教学中注意发现问题、思考问题,寻找解决问题的方法。鼓励自主探索、逐步递进。积极参与讨论、合作学习,肯定成绩,激发学习兴趣和积极性

  四、教学过程

  教学进程教学内容学生活动设计意图引入新知问题一:

  把一张纸对折2次可裁成4张,即2×2张;对折3次可裁成8张,即2×2×2张。

  问:若对折10次可裁成几张?请用一个算式表示(不用算出结果).若对折100次,算式中有几个2相乘?

  显然,我们遇到了麻烦:如何书写100个、1000个相同因数相乘这样繁琐的式子呢?我们有必要创设一种新的表示方法来表示这样的运算。

  问题二:

  边长为a的正方形的面积为;

  棱长为a的正方体的体积为;

  学生动手操作,观察纸片,发现规律

  回忆小学已学知识并独立完成

  目的是培养学生的观察及归纳能力

  让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式

  学习新知

  2个a相加可记为:a+a=2a

  3个a相加可记为:a+a+a=3a

  4个a相加可记为:a+a+a+a=4a

  n个a相加可记为:a+a+a+……+a=na

  类比可得:

  2个a相乘可记为:EMBED Unknown

  3个a相乘可记为:EMBED Unknown

  4个a相乘可记为什么呢?

  n个a相乘又记为什么呢?

  定义:一般地,我们把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂。如果有n个a相乘,可以写成,也就是EMBED Unknown

  其中叫做的.n次方,也叫做的n次幂。叫做幂的底数可以取任何有理数;n叫做幂的指数,可以取任何正整数。

  特殊地,可以看作的一次幂,也就是说的指数是1.

  例如:读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘。 x看作幂的话,指数为1,底数为x.

  注意:当底数是负数或分数时,写成乘方形式时,必须加上括号。

  在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解。

  例1.填空:

  (1) EMBED Unknown的底数是_____,指数是_____,它表示______;

  (2)的底数是______,指数是______,它表示______;

  (3)的底数是______,指数是______,它表示_______;

  例2.计算:

  教师引导

  学生口答

  学生边记录,边体会、理解

  正确表达有理数的乘方

  学生口答

  分析例题并板书,巩固幂的意义,写出体现幂的意义的全过程

  体会类比的数学思想

《有理数》教案设计10

  【回顾思考】

  1、请认真阅读课本P41-50,并把你认为重要的概念、法则和例题划出。

  2、请合上课本,试着回答下列问题:

  (1)说说什么是乘方?什么是幂?有什么符号法则?

  (2)在做有理数的混合运算时运算顺序怎样?

  (3)举例说明什么是科学记数法?

  (4)举例说明如何确定一个数的有效数字?

  【基础训练】

  一、填空:

  1、根据乘方的意义,(-3)4=;-34=.

  2、的平方等于它本身;的立方等于它本身。

  3、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=。

  4、若(a-1)2+︳b+2︳=0,那么a+b=。

  5、地球上的海洋面积用科学计数法表示为3.61×108平方千米,原来的数是。

  6、一天有8.64×104秒,一年按365天计算,一年约有秒(保留3个有效数字)

  一、填空:

  1、若x20xx=1,则x20xx+2005=。

  2、平方等于1/16的数是,立方等于-27的数是,立方后是本身的数有。

  3、当n为奇数时,1+(-1)n=;当n为偶数时,1+(-1)n=。

  4、若︳a-1︳+(b+2)2=0,那么(a+b)20xx+a20xx=。

  5、若每人每天浪费水0.32升,那么100万人每天浪费的水为多少升。用科学记数法表示为升。

  6、由四舍五入得到的近似数0.8080有个有效数字,分别是,它精确到位。

  7、3.16×106原数为,精确到位。

  8、写出3,-9,27,-81,243,…这行数的第n个数。

  二、选择:

  1、若规定a⊕b=(a+1)b,则1⊕3的值为()

  (A)1(B)3(C)6(D)8

  2、(-2)11+(-2)10的值是()

  (A)-2(B)(-2)21(C)0(D)-210

  3、下列语句中,正确的个数是()

  ①任何小于1的有理数都大于它的'平方

  ②没有平方得-9的数

  二、选择:

  1、下列各组数中,不相等的是()

  (A)(-3)2与-32(B)(-3)2与32(C)(-2)3与-23(D)∣-2∣3与∣-23∣

  2、(-2)11+(-2)10的值是()

  (A)-2(B)(-2)21(C)0(D)-210

  3、下列各式中正确的是()

  (A)a2=(-a)2(B)a3=(-a)3(C)-a2=∣-a2∣(D)a3与∣a3∣

  4、人类的遗传物质是DNA,他是一个很长的链,最短的也长达30000000个核苷酸。这个数用科学记数法表示为()

  (A)3×106(B)0.3×107(C)3×107(D)0.3×108

  5、用四舍五入法按要求对0.05019分别取近似值,其中错误的是()

  (A)0.1(精确到0.1)(B)0.05(精确到百分位)

  (C)0.05(精确到千分位)(D)0.0502(精确到0.0001)

  三、计算:

  1、8+(-3)2×(-2)

  2、100÷(-2)2-(-2)÷(-2/3)

  3、(-0.25)20xx×(-4)20xx×(-1)20xx

  列方程解应用题的基本关系量:

  (1)行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度

  (2)工程问题:工作效率×工作时间=工作量

  (3)浓度问题:溶液×浓度=溶质

  (4)银行利率问题:免税利息=本金×利率×时间

《有理数》教案设计11

  一、知识与技能

  (1)会用计算器计算有理数的除法运算。

  (2)掌握有理数的加减乘除混合运算。

  二、过程与方法

  通过本节课的数学活动,培养学生分析问题,综合应用知识解决实际问题的'能力。

  三、情感态度与价值观

  培养学生动手操作能力,体会数学知识的应用价值。

  教学重、难点与关键

  1.重点:掌握有理数的加减乘除混合运算。

  2.难点:符号的确定。

  3.关键:掌握运算顺序以及运算法则。

  四、教学过程、课堂引入

  1、在小学里,加减乘除四则运算的顺序是怎样的?

  先乘除后加减,同级运算从左往右依次进行,有括号的,先算括号内的,另外还要注意灵活应用运算律。 有理数加减、乘除混合运算顺序与数的运算顺序一样。

  五、新授

  例8.计算:(1)-8+4(-2);

  (2)(-7)(-5)-90(-15)。

  分析:(1)按运算顺序,先做除法,再做加法。(2)先算乘、除法,然后做减法。

  解:(1)-8+4(-2)

  =-8+(-2) =-10

  (2)(-7)(-5)-90(-15)

  =35-(-6)=35+6=41

  例9:某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年总的盈利情况如何?

  分析:盈利与亏损是具有相反意义的量,我们把盈利额记为正数,亏损额记为负数,那么公司去年全年亏盈额就是去年1~12月的所亏损额和盈利额的和。

《有理数》教案设计12

  一、教学内容

  《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。

  在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

  二、设计理念

  七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。

  三、教学目标与重难点

  目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;

  2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

  3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

  重点:会用有理数加法法则进行运算.

  难点:异号两数相加的法则.

  四、学情分析

  1.学生非常熟悉正数加正数,正数加零的情况。

  2.有理数的分类、数轴、绝对值的相关知识已经掌握。

  3.学生善于形象思维,思维活跃,能积极参与讨论。

  五、教学策略

  1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;

  2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;

  3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。

  六、教学流程

  1.回顾旧知,启发思维

  展示课件上的三个问题,请同学们思考并回答。

  (1)有理数是怎么分类的?

  (2)有理数的绝对值是怎么定义的?

  (3)下列各组数中,哪一个数的绝对值大?

  7和4; -7和4; 7和-4; -7和-4

  【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。

  2.创设情境 引入课题

  问题一:两个有理数相加,有多少种不同的'情形?

  答:正+正,负+负,正+负,正+0,负+0,0+0.

  【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。

  问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?

  请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)

  师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?

  (出示课题)

  【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。

  (二)分析问题探究新知

  问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?

  学生们各抒己见,总结法则。

  1、 同号两数相加,取相同的符号,并把绝对值相加。

  2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。

  3、 一个数同0相加,仍得这个数

  老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。

  【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力

  (三)运用新知深入体会

  例1计算(-3)+(-9).

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

  解:(-3)+(-9)=-12.

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

  解题时,先确定和的符号,后计算和的绝对值.

  课堂练习:

  1.计算(口答)

  (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

  (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

  2.计算

  (1)5+(-22); (2)(-1.3)+(-8)

  (3)(-0.9)+1.5; (4)2.7+(-3.5)

  3.用“>”或“<”填空:

  (1)如果a>0,b>0,那么a+b____0;

  (2) 如果a<0,b<0,那么a+b____0;

  (3) 如果a>0,b<0,|a|>|b|,那么a+b____0;

  (4) 如果a<0,b>0, |a|<|b|,那么a+b____0;

  【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。

  问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?

  (1)如果a>0,b>0,那么a+b=+(|a|+|b|)

  (2) 如果a<0,b<0,那么a+b=-(|a|-|b|)

  (3) 如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)

  (4) 如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)

  (5)a+0=a.

  【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。

  (四)延伸拓展敢于挑战

  问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?

  问题六:小学学过的运算律是否适用于有理数的加法?

  【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。

  (五)归纳总结感受思想

  (1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?

  (2)本节课你学习到了哪些数学思想方法?

  【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。

  (六)布置作业

  (1)P56 习题1、3

  (2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。

  【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。

  七、设计说明

  1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;

  2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。

  3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。

  4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。

《有理数》教案设计13

  教学目标

  1,在现实背景中理解有理数加法的意义。

  2,经历探索有理数加法法则的过程,理解有理数的加法法则。

  3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。

  4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。

  5,在教学中适当渗透分类讨论思想

  教学难点

  异号两数相加

  知识重点

  和的符号的确定

  教学过程

  (师生活动)设计理念

  设置情境

  引入课题回顾用正负数表示数量的实际例子;

  在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?

  师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。

  (出示课题)让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。

  分析问题

  探究新知如果是球队在某场比赛中上半场失了两个球,下

  半场失了3个球,那么它的得胜球是几个呢?算式应该

  怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?

  (学生思考回答)

  思考:请同学们想想,这支球队在这场比赛中还可

  能出现其他的什么情况?你能列出算式吗?与同伴交流。

  学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。

  2,借助数轴来讨论有理数的加法。I

  一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作—5m。

  (1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。

  (2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)

  (3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?

  (4)在学生归纳的基础上,教师出示有理数加法法则。

  有理数加法法则:

  1,同号两数相加,取相同的符号,并把绝对值相加。

  2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

  3,一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。

  估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。

  但不能把它归的为同号异号等三类,所以此处需教师。点拔、指扎,体现教师的引导者作用。

  ①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的`终点。②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。③让学生感受“数学模型”的思想。④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律

  解决问题解决问题

  例1计算:

  (1)(—3)+(—9);(2)(—5)+13;

  (3)0十(—7);(4)(—4。7)+3。9。

  教师板演,让学生说出每一步运算所依据的法则。

  请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)

  例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数。

  (让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)

  学生活动:请学生说一说在生活中用到有理数加法的例子。注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位。(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过

  程写完整。(3)体现化归思想。(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算。

  拓宽学生视野,让学

  生体会到数学与生活的密切联系。

  课堂练习教科书第23页练习

  小结与作业

  课堂小结通过这节课的学习,你有哪些收获,学生自己总结。

  本课作业必做题:阅读教科书第20~22页,教科书第31习题1。3第1、12、第13题。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。

  2,注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)。如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。

  3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听

  别人的意见和建议。

  附板书:1。3。1有理数的加法(一)

《有理数》教案设计14

  一、知识与技能

  理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算。

  二、过程与方法

  经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力。

  三、情感态度与价值观

  体会数学与现实生活的联系,提高学生学习数学的兴趣。

  教学重点、难点与关键

  1.重点:有理数加减法统一为加法运算,掌握有理数加减混合运算。

  2.难点:省略括号和加号的加法算式的运算方法。

  3.关键:理解加减混合运算可以统一成加法,以及正确理解省略加号的有理数加法形式。

  教具准备

  投影仪。

  四、教学过程

  一、复习提问,引入新课

  1.叙述有理数的加法、减法法则。

  2.计算。

  (1)(-8)+(-6); (2)(-8)-(-6); (3)8-(-6);

  (4)(-8)-6; (5)5-14.

  五、新授

  我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的.加减混合运算。

  例6:计算:(-20)+(+3)-(-5)-(+7)。

  分析:这个式子中有加法,也有减法,可以按照运算顺序,从左到右逐一加以计算。也可以用有理数的减法法则,则它改写为(-20)+(+3)+(+5)+(-7)使问题转化为几个有理数的加法。

  解:(-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7)

  =[(-20)+(-7)]+[(+3)+(+5)]

  =-27+(+8)

  =-19

  把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。

  归纳:加减混合运算可以统一为加法运算。

  用式子表示为a+b-c=a+b+(-c)。

  式子(-20)+(+3)+(+5)+(-7)是-20,+3,+5,-7这四个数的和,为了书写简单,可以省略式子中的括号和加号,把它写为:-20+3+5-7.

  这个式子读作负20、正3、正5、负7的和或读作负20加3加5减7。

  例6的运算过程也可简写为:

  (-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7) (加减法统一为加法)

  =-20+3+5-7 (省略式子中的括号和括号前面的加号)

  =-20-7+3+5 (加法交换律交换时,要连同符号一起交换)

  =-19 (异号两数相减)

  六、巩固练习

  1.课本第24页练习。

  (1)题是已写成省略加号的代数和,可运用加法交换律、结合律。

  原式=1+3-4-0.5=0-0.5=-0.5

  (2)题运用加减混合运算律,同号结合。

  原式=-2.4-4.6+3.5+3.5=-7+7=0

  (3)题先把加减混合运算统一为加法运算。

  原式=(-7)+(-5)+(-4)+(+10)

  =-7-5-4+10 (省略括号和加号)

  =-16+10

  =-6

  七、课堂小结

  有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:(1)凡相加是整数的,可以先加;(2)分母相同或易于通分的分数相结合;(3)有互为相反数可以互相抵消的,先相加;(4)正、负数分别相加。总之要认真观察,灵活运用运算律。

  八、作业布置

  1.课本第25页第26页习题1.3第5、6、13题。

  九、板书设计:

  1.3.2 有理数的减法(2)

  第四课时

  1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。

  归纳:加减混合运算可以统一为加法运算。

  用式子表示为a+b-c=a+b+(-c)。

  2、随堂练习。

  3、小结。

  4、课后作业。

  十、课后反思

《有理数》教案设计15

  三维目标

  一、知识与技能

  经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。

  二、过程与方法

  经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。

  三、情感态度与价值观

  培养学生积极探索精神,感受数学与实际生活的联系。

  教学重、难点与关键

  1.重点:应用法则正确地进行有理数乘法运算。

  2.难点:两负数相乘,积的符号为正与两负数相加和的符号为负号容易混淆。

  3.关键:积的.符号的确定。

  教具准备

  投影仪。

  四、教学过程

  一、引入新课

  在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?

  五、新授

  课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O.

  (1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

  (2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

  (3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

  (4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

  分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。

《《有理数》教案设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【《有理数》教案设计】相关文章:

有理数教案02-14

有理数乘方说课稿03-09

有理数教学反思04-01

有理数的乘法教案03-25

《有理数》教学反思04-15

有理数的乘方的教案02-26

《有理数的乘法》教案02-26

有理数的减法说课稿05-27

有理数教学反思06-19

《有理数的加法》教案02-25

《有理数》教案设计

  作为一名为他人授业解惑的教育工作者,编写教案是必不可少的,教案是备课向课堂教学转化的关节点。怎样写教案才更能起到其作用呢?以下是小编帮大家整理的《有理数》教案设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《有理数》教案设计

《有理数》教案设计1

  教学目标

  1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

  2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

  3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

  4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

  教学建议

  (一)重点、难点分析

  本节的教学重点是能够熟练进行有理数的.乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

  本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

  (二)知识结构

  (三)教法建议

  1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

  2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

  3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

  4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

  5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

  6.如果因数是带分数,一般要将它化为假分数,以便于约分。

《有理数》教案设计2

  一、背景知识

  《有理数》选自浙江版《义务教育课程标准实验教科书·数学·七年级上册》第一章《从自然数到有理数》中的第二节,这一章是开启整个初中阶段代数学习的大门。《有理数》是本章的第二节。本节内容让学生在现实的情境中理解负数的引入确实是实际生活的需要,感受到有理数应用的广泛性,是在小学学习自然数和分数之后,数的概念的第一次扩充,是自然数和分数到有理数的衔接与过渡,并且是以后学习数轴、绝对值及有理数运算的基础。

  二、教学目标

  1、知识目标:理解有理数产生的必然性、合理性;会判断一个数是正数还是负数,能灵活运用正、负数表示生活中具有相反意义的量;会将有理数从不同的角度进行分类。

  2、过程与方法:利用学生身边熟悉的事物引入负数、学习有理数;运用有理数表示现实生活问题中的量;让学生经历有理数概念的形成及运用过程,领会分析、总结的方法。

  3、情感与能力目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过实际问题的解决和从不同角度对有理数分类,可提高学生应用数学能力和培养学生的分类思想。

  三、教学重点、难点

  重点:能应用正、负数表示具有相反意义的量和对有理数进行合理的分类。

  难点:用有理数表示实际生活中的量。

  四、教学设计

  (一)创设情境 探求新知

  如图表示某一天我国5个城市的最低气温。

  请同学们合作讨论下列问题:

  1、-20℃、-10℃、5℃、0℃、10℃ 这几个量分别表示什么?

  2、你还在哪些地方见到过用带有“-”号的数来表示某一种量,请讲出来。

  把学生讲出的较恰当的量写到黑板上,再引导学生把与之相对的量分别写在后边,如:零下20℃——零上10℃, 降低5米——升高8米, 支出100元——收入500元。指出这样的量就是具有相反意义的量,并从以下方面加以理解。

  (1)具有相反意义的量是:意义相反,与值无关。

  (2)区分“意义相反”与“意义不同”。

  反问学生:以上具有相反意义的量能用我们学过的自然数和分数表示出来吗?

  显然是不能的。为了解决这样的实际问题,我们需要引进一种新的数——负数。

  我们把一种意义的量(如零上)规定为正,用学过的数(零除外)来表示,这样的数叫做正数,正数前面可以放上正号“+”来表示(常省略不写),;把另一种与之意义相反的量规定负,用学过的数(零除外)前面放上负号“-”来表示,这样的数叫做负数(负号不能省略)。

  如:“+2”读做“正2”、“-3.3”读做“负3.3”等。

  这样我们学过的数中又增加了新的数——负整数和负分数;相应地我们学过的自然数和分数分别称为正整数和正分数。

  (二)运用新知 体验成功

  填空:

  1)规定盈利为正,某公司去年亏损了2.5万元,记做__________万元,今年盈利了3.2万元,记做__________万元;

  2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔__________米;吐鲁番盆地最低处低于海平面155米,记做海拔__________米;

  3)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。汽车向北行驶75km,记做________km(或_______km),汽车向南行驶100km,记做________km;

  4)下降米记做米,则上升米记做__________米;

  5)如果向银行存入50元记为50元,那么-30.50元表示__________;

  6)规定增加的百分比为正,增加25%记做__________,-12%表示__________.

  利用第3)题说明在表示具有相反意义的量时,把哪一种意义的量规定为正,是相对的'例如我们可以把向南100米记做+100km,那么向北记做-75km.但习惯上,人们常把上升、运进、零上、增加、收入等规定为正。

  (请同学独立完成,然后同桌同学相互评价。)

  (三) 师生互动,继续探究

  (合作学习)读一读这些数0,880,-20xx,+123,-233,-2.5,+3.2,+918,-155,+75,-100,25%,-12%,请根据你认定的数的特征进行分类,并说出分类的特征。

  让学生四人小组合作讨论完成。

  估计可能出现的正确结论有:

  ;

  ;

  对于较为正确的分类,并能说出特征的都将给予肯定,重视个体差异,体现多元评价的思想,发挥评价的激励作用,保护学生的自尊心,增强学生的自信心.然后教师给出规范的分类:

  正整数、零和负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

  说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,零既不是正数,也不是负数.

  (四) 分层练习,巩固提高

  为了使学生实现从掌握知识到运用知识的转化,使知识教育与能力培养结合起来,设计分层练习。

  例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?

  -8.4, 22, ,0.33, , -9.

  练习1 判断表中各数属于什么数,在相应的空格内打“√” .

  正整数

  整数

  分数

  正数

  负数

  有理数

  20xx

  √

  √

  √

  √

  -4.9

  0

  -12

  探究活动:

  练习2 如图,两个圈内分别表示所有正数组成的正数集合和所有整数组成的整数集合.请写出3个分别满足下列条件的数:

  1)属于正数集合,但不属于整数集合的数;

  2)属于整数集合,但不属于正数集合的数;

  3)既属于正数集合,又属于整数集合的数.

  将它们分别填入图中适当的位置.你能说出这两个圈的重叠部分表示什么数的集合吗?

  通过多角度的练习,并对典型错误进行讨论与矫正,使学生巩固所学内容,同时完成对新知的迁移。

  (五)概括梳理,形成系统

  采取师生互动的形式完成。即:

  学生谈本节课的收获,教师适当的补充、概括,以本节知识目标的要求进行把关,确保基础知识的当堂落实。

  (六)布置作业

  1、课后作业

  2、设计题可根据自己的喜好和学有余利的同学完成。

《有理数》教案设计3

  一、复习目标:

  (一、)知识目标:1:理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。

  2:掌握四条法则:有理数的加、减、乘、除法则。

  (二、)能力目标:1:会运用三条运算律进行有理数的简便运算。

  2:初步领会有理数的两种方法(有理数大小的比较方法,平方表、立方表的查法)的作用。

  3:进一步体验有理数的一个规定(有理数的混合运算的顺序规定)。

  (三、)德育目标:1:使学生养成“言必有据、做必有理、答必正确”的良好思维习惯。

  2:增进学生的“应用数学知识解决实际问题的数学思想。

  二、重、难点:重点是有理数的混合运算,并能熟练地运用它解决简单的应用题。

  难点是绝对值的应用。

  三、教学过程

  概念的系统化

  负数的概念:初一学生由于受小学算术数的影响,容易遗漏负数,因此,准备以下判断题:

  若一个数的绝对值等于5,则这个数是5。

  若一个数的倒数等于它的本身,则这个数是1。

  若一个数的'平方等于4,则这个数是2 。

  若一个的立方等于它的本身 ,则这个数是0 或1 。

  数“0”的性质:因为0既不是正数,也不是负数,是正数和负数的分界线。给出下面的问题:

  相反数是它本身的数是__。

  绝对值是它本身的数是__。

  正整数次幂是它本身的数是__。

  不为0 的任何有理数的0次幂是__。

  0与任何有理数相乘都得__。

  运算律的应用:正确运用运算律可以使有理数计算简便。

  把正、负数结合在一起;

  把互为相反数结合在一起;

  把同分母分数结合在一起;

  把能凑整、凑0 的两个数结合在一起。

  最容易出错的两个重要性质:绝对值和平方,可以提出以下例题:

  有理数的绝对值总是什么数?

  有理数的平方总是什么数?

  若(a-1)2+(b+2)2=0,则a=__,b=__。

  若|a-b|+|b-3|=0,则______。

  (5)|3-π|+|4–π|的计算结果是__________。

  (6)已知:|x|=3,|y|=2,且xy<0,则x+y=__________。

  (7)实数在数轴上的对应点如图,

  a0b

  化简a+|a+b|-|b–a|=___________。

  (8)如果|x–3|=0,那么x=___________。

  四、典型示例,科学归纳.

  例 1、指出下列各数的相反数、倒数、绝对值,并指出哪两个数互为相反数、互为倒数、绝对值相等;把各数分别表示在数轴上,并填在相应的集合里。

《有理数》教案设计4

  教学目标:

  1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。

  2.已知一个数,会求出它的正整数指数幂,渗透转化思想。

  3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。

  教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。

  教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。

  教学过程设计:

  (一)创设情境,导入新课

  提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?

  a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)

  (多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?

  1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.

  (二)合作交流,解读探究

  一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。

  求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。

  说明:(1)举例94来说明概念及读法。

  (2)一个数可以看作这个数本身的一次方,通常省略指数1不写。

  (3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。

  (4)乘方是一种运算,幂是乘方运算的结果。

  (三)应用迁移,巩固提高

  【例1】(1)(-4)3;(2)(-2)4;(3)-24.

  点拨:(1)计算时仍然是要先确定符号,再确定绝对值。

  (2)注意(-2)4与-24的区别。

  根据有理数的乘法法则得出有理数乘方的符号规律:

  负数的奇次幂是负数,负数的偶次幂是正数;

  正数的任何次幂都是正数,0的任何正整数次幂都是0.

  【例2】计算:

  (1)()3;     (2)(-)3;

  (3)(-)4; (4)-;

  (5)-22×(-3)2; (6)-22+(-3)2.

  (四)总结反思,拓展升华

  1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。

  2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值。

  乘方的含义:(1)表示一种运算;(2)表示运算的`结果。乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂。

  乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数。注意(-a)n与-an及()n与的区别和联系。

  (五)课堂跟踪反馈

  1.课本P42练习第1.2题。

  2.补充练习

  (1)在(-2)6中,指数为,底数为.?

  (2)在-26中,指数为,底数为.?

  (3)若a2=16,则a=    .?

  (4)平方等于本身的数是,立方等于本身的数是.?

  (5)下列说法中正确的是(  )

  A.平方得9的数是3

  B.平方得-9的数是-3

  C.一个数的平方只能是正数

  D.一个数的平方不能是负数

  (6)下列各组数中,不相等的是(  )

  A.(-3)2与-32 B.(-3)2与32

  C.(-2)3与-23 D.|2.3与|-23|

  (7)下列各式中计算不正确的是(  )

  A.(-1)20xx=-1

  B.-12002=1

  C.(-1)2n=1(n为正整数)

  D.(-1)2n+1=-1(n为正整数)

  (8)下列各数表示正数的是(  )

  A.|a+1| B.(a-1)2

  C.-(-a) D.||

  第2课时有理数的混合运算

  教学目标:

  1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序。

  2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律。

  教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算。

  教学难点:有理数的混合运算。

  教学过程:

  一、有理数的混合运算顺序:

  1.先乘方,再乘除,最后加减。

  2.同级运算,从左到右进行。

  3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  【例1】计算:

  (1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);

  (2)1-×[3×(-)2-(-1)4]+÷(-)3.

  强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值。

  【例2】观察下面三行数:

  -2,4,-8,16,-32,64,…;①

  0,6,-6,18,-30,66,…;②

  -1,2,-4,8,-16,32,….③

  (1)第①行数按什么规律排列?

  (2)第②③行数与第①行数分别有什么关系?

  (3)取每行数的第10个数,计算这三个数的和。

  【例3】已知a=-,b=4,求()2--(ab)3+a3b的值。

  二、课堂练习

  1.计算:

  (1)|-|2+(-1)101-×(0.5-)÷;

  (2)1÷(1)×(-)÷(-12);

  (3)(-2)3+3×(-1)2-(-1)4;

  (4)[2-(-)3]-(-)+(-)×(-1)2;

  (5)5÷[-(2-2)]×6.

  2.若|x+2|+(y-3)2=0,求的值。

  3.已知A=a+a2+a3+…+a20xx,若a=1,则A等于多少?若a=-1,则A等于多少?

  三、课时小结

  1.注意有理数的混合运算顺序,要熟练进行有理数混合运算。

《有理数》教案设计5

  教学目的:

  经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。

  教学重点:

  有理数的加法法则

  教学难点:

  异号两数相加的法则

  教学教程:

  一、复习提问:

  1、如果向东走5米记作+5米,那么向

  西走3米记作__.

  2、已知a=-5,b=+3,

  ︱a︳+︱b︱=_

  已知a=-5,b=+3,

  ︱a︱-︱b︱=__

  -1012345678

  二、授新课

  小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的方向为正方向

  提问:这题有几种情况?

  小结:有以下四种情况

  (1)两次都向东走,

  (2)两次都向西走

  (3)先向东走,再向西走

  (4)先向西走,再向东走

  根据小结,我们再分析每一种情况:

  (1)向东走5米,再向东走3米,一共向东走了多少米?

  +5+3(+5)+(+3)=+8

  (2)向西走-5米,再向西走-3米,一共向东走了多少米?

  -5-3(-3)+(-5)=-8

  (3)先向东走5米,再向西走3米,两次一共向东走了多少米?

  +3+5(+5)+(-3)=2

  (4)先向西走5米,再向东走3米,两次一共向东走了多少米?

  -5+3(-5)+(+3)=-2

  下面再看两种特殊情况:

  (5)向东走5米,再向西走5米,两次一共向东走了多少米

  -5+5(+5)+(-5)=0

  (6)向西走5米,再向东走0米,两次一共向东走了多少米?

  -5(-5)+0=-5

  小结:总结前的六种情况:

  同号两数相加:(+5)+(+3)=+8

  (-5)+(-3)=-8

  异号两数相加:(+5)+(-3)=2

  (-5)+(+3)=-2

  (+5)+(-5)=0

  一数与零相加:(-5)+0=-5

  得出结论:有理数加法法则

  1、同号两数相加,取相同的符号,并把绝对值相加

  2、绝对值不等的'异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零

  3、一个数与零相加,仍得这个数

  例如:

  (-4)+(-5)(同号两数相加)

  解:=-()(取相同的符号)

  =-9(并把绝对值相加)

  (-2)+(+6)(绝对值不等的异号两数相加)

  解:=+()(取绝对值较大的符号)

  =+4(用较大的绝对值减去较小的绝对值)

  练习:

  口答:

  1、(-15)+(-32)=

  2、(+10)+(-4)=

  3、7+(-4)=

  4、4+(-4)=

  5、9+(-2)=

  6、(-0.5)+4.4=

  7、(-9)+0=

  8、0+(-3)=

  计算:

  (1)(-3)+(-9)(2)(-1/2)+(+1/3)

  解略

  练习:

  (1)15+(-22)=

  (2)(-13)+(-8)=

  (3)(-0·9)+1·5=

  (4)2·7+(-3·5)=

  (5)1/2+(-2/3)=

  (6)(-1/4)+(-1/3)=

  练习三:

  1、填空:

  (1)+11=27(2)7+=4

  (3)(-9)+=9(4)12+=0

  (5)(-8)+=-15(6)+(-13)=-6

  2、用“<”或“>”号填空:

  (1)如果a>0,b>0,那么a+b0;

  (2)如果a<0,b<0,那么a+b0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b0

  小结:

  1、掌握有理数的加法法则,正确地进

  行加法运算。

  2、两个有理数相加,首先判断加法类

  型,再确定和的符号,最后确定和的绝对值。

  作业:课本第38页2、3

  第40页1、2

《有理数》教案设计6

  目标:

  1、知识与技能

  使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。

  2、过程与方法

  经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。

  重点、难点:

  1、重点:有理数乘法法则。

  2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。

  过程:

  一、创设情景,导入新

  1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?

  乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:

  (-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。

  3、在一条由西向东的笔直的马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以5千米的向西行走,那么经过3小时,她走了多远?

  二、合作交流,解读探究

  1、小学学过的乘法的意义是什么?

  乘法的分配律:a×(b+c)=a×b+a×c

  如果两个数的和为0,那么这两个数 互为相反数 。

  2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)

  3、学生活动:计算3×(-5)+3×5,注意运用简便运算

  通过计算表明3×(-5)与3×5互为相反数,从而有

  3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。

  类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0

  由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。

  4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?

  鼓励学生自己归纳,并用自己的'语舞衫歌扇,并与同伴交流。

  在学生猜测、归纳、交流的过程中及时引导、肯定

  两数相乘,同号得正,异号得负,绝对值相乘。

  任何数与0相乘,积仍为0

  (板书)有理数乘法法则:

  三、应用迁移,巩固提高

  1、计算

  (-5)×(-4) 2×(-3.5) × (-0.75)×0

  (1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。

  (2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。

  2、计算下列各题

  ① (-4)×5×(-0.25) ② ×( )×(-2)

  ③ ×( )×0×( )

  指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。

  教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?

  学生小结后,教师归纳:

  几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0

  练习:本P31练习

  四、总结反思(学生先小结)

  1、有理数乘法法则

  2、有理数乘法的一般步骤是:

  (1)确定积的符号; (2)把绝对值相乘。

  五、作业:P39习题1.5 A组 1、2

《有理数》教案设计7

  把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。(板书课题2.7有理数的加减混合运算

  按教师要求口答并读出结果

  师生共同小结:

  有理数加减法混合运算的题目的步骤为

  1.减法转化成加法;

  2.省略加号括号;

  3.运用加法交换律使同号两数分别相加;

  4.按有理数加法法则计算。

  采用同桌互相测验的方法,以达到纠正错误的目的。针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。

  这两个题目是本节课的重点.采用测验的方式来达到及时反馈。

  归纳小结

  教师提问:

  1.怎样做加减混合运算题目?

  2.省略括号和的形式的两种读法各是什么?

  学生讨论后口答小结不是教师单纯的`总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统。

  布置作业必做题:(一)计算:

  (1)-8+12-16-23;

  (2)- + - -

  (3)-40-28-(-19)+(-24)-(-32);

  (4)-2.7+(-3.2)-(1.8)-2.2;

  (二)选做题:(1)当b>0时,a,a-b,a+b哪个最大,哪个最小? (2)当当b<0时,a,a-b,a+b哪个最大,哪个最小?

  综合考察

  学以致用

  体现分层次教学使不同学生得到不同的发展

  附板书设计:

  2.7有理数的加减混合运算

  例题:计算: 练习处

  1.(+3)-(-9)+(-4)-(+2)

  2. - + - +

  教学反思:

  本节课是一节计算课,是学生们在学习了有理数的加法和减法的基础上进行教学的。通过本节课的学习使学生掌握代数和的概念,知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式即代数和的形式,并能熟练掌握有理数的加减混合运 算及其运算顺序。还要培养学生理解事物发展变化是可以相互转化的辩证唯物主义观点。本节课本着“扎实、有效”的原则,既关注课堂教学的本质,有注重学生能力的培养,且面向全体学生来设计教学。通过教学实践,在本节课上不足的地方是:1.时间掌握的不好有一些前松后紧,以至于后面没有时间来进行本节课的小结,就显得有一些虎头蛇尾了。2、练习的形式还有些单调,如时间富裕还可以准备一些判断练习,把学生在做题时容易出错的地方写出来,让学生来进行判断,用这种方式来进行强化来练习,可以收到比较好的效果。

《有理数》教案设计8

  教学目标

  1、让学生能进行包括小数或分数的有理数的加减混合运算。

  2、让学生进一步体会到有理数减法可以转化为加法进行计算,并体会有理数加减法在实际中的应用。

  教学重点与难点

  重点:有理数加法和减法的混合运算。

  难点:减法统一成加法再写成代数和的形式。

  教学过程

  一、复习引入

  课本P56图是一条河流在枯水期的水位图。此时,桥面距水面的高度为多少米?

  可用两种方法回答这个问题。

  第一个方法:观察画面,从实际问题出发,桥面高出平均水位12.5米,水面又低于平均水位3分米(0.3米),两段高度的和就是桥面距水面的高度。可得算式:12.5+0.3=12.8(米)。

  第二个方法:利用有理数减法法则得算式:

  12.5―(―0.3)=12.8(米)。

  比较两个算式,使学生进一步体会减法可以转化为加法。另外,此题中进行了含有小数的有理数的减法运算。

  二、新课的进行

  某地区一天早晨的气温是-9℃,中午上升了11℃,半夜又下降了6℃。半夜的温度是多少?

  解法一:(-9)+11=2,2+(-6)=-4。

  所以半夜的温度是-4℃。

  解法二:-9+11-6=2-6=-4。所以半夜的温度是-4℃。

  比较以上两种解法,结果是一样的,而解法二中的算式是有理数加减的运算。

  议一议:P57议一议

  通过对此问题的讨论,学生将回顾有理数的加法法则,并用以进行有关小数的运算。计算如下:

  4.5+(-3.2)+1.1+(-1.4)

  =1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)

  此时飞机比飞点高了1千米。

  注意运算顺序是从左到右的计算过程。

  还可以这样计算:4.5-3.2+1.1-1.4

  =1.3+1.1-1.4=2.4-1.4=1(千米)

  此时飞机比飞点高了1千米。

  比较以上两种算法,你发现了什么?

  (1)我们可以把有理数的加减法的混合运算统一成加法运算,使加减法的混合运算化为单一的加法运算。

  (2)有理数的加减混合运算统一为加法运算以后,保留各加数的.性质符号,去掉括号并把加号省略,而形成加减混合运算的简洁的形式。

  例1 计算(P58例1)

  例2 计算:(1) (2)

  解:(1)

  (2)

  三、课堂练习

  1、课本P58随堂练习1、(1),(2),(3)

  2、计算:(1) (2)

  四、课堂小结

  根据有理数的减法法则,我们知道风是有理数的减法,都可以转化为加法,利用有理数的加法法则去运算。因此,我们可以把有理数加减法的混合运算统一成加法以后,可以将算式写成省略括号及前面加号的形式。

  五、作业设计

  1、P58 习题2.7 1,3

《有理数》教案设计9

  一、教学目标

  1.能理解并掌握有理数乘方的概念及意义,并能够正确进行有理数的乘方运算;

  2.通过观察、猜想、实践等数学活动,学生从中提高观察、类比、归纳和计算的能力。

  3.初步了解并体会转化的数学思想,逐步养成观察并发现规律的意识,在相互启发中体验合作学习,树立团队意识。

  二、教学重难点?

  有理数乘方的概念及意义,并正确进行有理数乘方的运算

  有理数乘方的概念及意义,并正确进行有理数乘方的运算

  三、教学策略

  本节课采用“启发引导、动手操作、分析讲解”的教学方式,亲身经历将实际问题抽象成数学模型并进行解释和运用的过程。在教学中注意发现问题、思考问题,寻找解决问题的方法。鼓励自主探索、逐步递进。积极参与讨论、合作学习,肯定成绩,激发学习兴趣和积极性

  四、教学过程

  教学进程教学内容学生活动设计意图引入新知问题一:

  把一张纸对折2次可裁成4张,即2×2张;对折3次可裁成8张,即2×2×2张。

  问:若对折10次可裁成几张?请用一个算式表示(不用算出结果).若对折100次,算式中有几个2相乘?

  显然,我们遇到了麻烦:如何书写100个、1000个相同因数相乘这样繁琐的式子呢?我们有必要创设一种新的表示方法来表示这样的运算。

  问题二:

  边长为a的正方形的面积为;

  棱长为a的正方体的体积为;

  学生动手操作,观察纸片,发现规律

  回忆小学已学知识并独立完成

  目的是培养学生的观察及归纳能力

  让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式

  学习新知

  2个a相加可记为:a+a=2a

  3个a相加可记为:a+a+a=3a

  4个a相加可记为:a+a+a+a=4a

  n个a相加可记为:a+a+a+……+a=na

  类比可得:

  2个a相乘可记为:EMBED Unknown

  3个a相乘可记为:EMBED Unknown

  4个a相乘可记为什么呢?

  n个a相乘又记为什么呢?

  定义:一般地,我们把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂。如果有n个a相乘,可以写成,也就是EMBED Unknown

  其中叫做的.n次方,也叫做的n次幂。叫做幂的底数可以取任何有理数;n叫做幂的指数,可以取任何正整数。

  特殊地,可以看作的一次幂,也就是说的指数是1.

  例如:读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘。 x看作幂的话,指数为1,底数为x.

  注意:当底数是负数或分数时,写成乘方形式时,必须加上括号。

  在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解。

  例1.填空:

  (1) EMBED Unknown的底数是_____,指数是_____,它表示______;

  (2)的底数是______,指数是______,它表示______;

  (3)的底数是______,指数是______,它表示_______;

  例2.计算:

  教师引导

  学生口答

  学生边记录,边体会、理解

  正确表达有理数的乘方

  学生口答

  分析例题并板书,巩固幂的意义,写出体现幂的意义的全过程

  体会类比的数学思想

《有理数》教案设计10

  【回顾思考】

  1、请认真阅读课本P41-50,并把你认为重要的概念、法则和例题划出。

  2、请合上课本,试着回答下列问题:

  (1)说说什么是乘方?什么是幂?有什么符号法则?

  (2)在做有理数的混合运算时运算顺序怎样?

  (3)举例说明什么是科学记数法?

  (4)举例说明如何确定一个数的有效数字?

  【基础训练】

  一、填空:

  1、根据乘方的意义,(-3)4=;-34=.

  2、的平方等于它本身;的立方等于它本身。

  3、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=。

  4、若(a-1)2+︳b+2︳=0,那么a+b=。

  5、地球上的海洋面积用科学计数法表示为3.61×108平方千米,原来的数是。

  6、一天有8.64×104秒,一年按365天计算,一年约有秒(保留3个有效数字)

  一、填空:

  1、若x20xx=1,则x20xx+2005=。

  2、平方等于1/16的数是,立方等于-27的数是,立方后是本身的数有。

  3、当n为奇数时,1+(-1)n=;当n为偶数时,1+(-1)n=。

  4、若︳a-1︳+(b+2)2=0,那么(a+b)20xx+a20xx=。

  5、若每人每天浪费水0.32升,那么100万人每天浪费的水为多少升。用科学记数法表示为升。

  6、由四舍五入得到的近似数0.8080有个有效数字,分别是,它精确到位。

  7、3.16×106原数为,精确到位。

  8、写出3,-9,27,-81,243,…这行数的第n个数。

  二、选择:

  1、若规定a⊕b=(a+1)b,则1⊕3的值为()

  (A)1(B)3(C)6(D)8

  2、(-2)11+(-2)10的值是()

  (A)-2(B)(-2)21(C)0(D)-210

  3、下列语句中,正确的个数是()

  ①任何小于1的有理数都大于它的'平方

  ②没有平方得-9的数

  二、选择:

  1、下列各组数中,不相等的是()

  (A)(-3)2与-32(B)(-3)2与32(C)(-2)3与-23(D)∣-2∣3与∣-23∣

  2、(-2)11+(-2)10的值是()

  (A)-2(B)(-2)21(C)0(D)-210

  3、下列各式中正确的是()

  (A)a2=(-a)2(B)a3=(-a)3(C)-a2=∣-a2∣(D)a3与∣a3∣

  4、人类的遗传物质是DNA,他是一个很长的链,最短的也长达30000000个核苷酸。这个数用科学记数法表示为()

  (A)3×106(B)0.3×107(C)3×107(D)0.3×108

  5、用四舍五入法按要求对0.05019分别取近似值,其中错误的是()

  (A)0.1(精确到0.1)(B)0.05(精确到百分位)

  (C)0.05(精确到千分位)(D)0.0502(精确到0.0001)

  三、计算:

  1、8+(-3)2×(-2)

  2、100÷(-2)2-(-2)÷(-2/3)

  3、(-0.25)20xx×(-4)20xx×(-1)20xx

  列方程解应用题的基本关系量:

  (1)行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度

  (2)工程问题:工作效率×工作时间=工作量

  (3)浓度问题:溶液×浓度=溶质

  (4)银行利率问题:免税利息=本金×利率×时间

《有理数》教案设计11

  一、知识与技能

  (1)会用计算器计算有理数的除法运算。

  (2)掌握有理数的加减乘除混合运算。

  二、过程与方法

  通过本节课的数学活动,培养学生分析问题,综合应用知识解决实际问题的'能力。

  三、情感态度与价值观

  培养学生动手操作能力,体会数学知识的应用价值。

  教学重、难点与关键

  1.重点:掌握有理数的加减乘除混合运算。

  2.难点:符号的确定。

  3.关键:掌握运算顺序以及运算法则。

  四、教学过程、课堂引入

  1、在小学里,加减乘除四则运算的顺序是怎样的?

  先乘除后加减,同级运算从左往右依次进行,有括号的,先算括号内的,另外还要注意灵活应用运算律。 有理数加减、乘除混合运算顺序与数的运算顺序一样。

  五、新授

  例8.计算:(1)-8+4(-2);

  (2)(-7)(-5)-90(-15)。

  分析:(1)按运算顺序,先做除法,再做加法。(2)先算乘、除法,然后做减法。

  解:(1)-8+4(-2)

  =-8+(-2) =-10

  (2)(-7)(-5)-90(-15)

  =35-(-6)=35+6=41

  例9:某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年总的盈利情况如何?

  分析:盈利与亏损是具有相反意义的量,我们把盈利额记为正数,亏损额记为负数,那么公司去年全年亏盈额就是去年1~12月的所亏损额和盈利额的和。

《有理数》教案设计12

  一、教学内容

  《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。

  在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

  二、设计理念

  七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。

  三、教学目标与重难点

  目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;

  2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

  3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

  重点:会用有理数加法法则进行运算.

  难点:异号两数相加的法则.

  四、学情分析

  1.学生非常熟悉正数加正数,正数加零的情况。

  2.有理数的分类、数轴、绝对值的相关知识已经掌握。

  3.学生善于形象思维,思维活跃,能积极参与讨论。

  五、教学策略

  1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;

  2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;

  3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。

  六、教学流程

  1.回顾旧知,启发思维

  展示课件上的三个问题,请同学们思考并回答。

  (1)有理数是怎么分类的?

  (2)有理数的绝对值是怎么定义的?

  (3)下列各组数中,哪一个数的绝对值大?

  7和4; -7和4; 7和-4; -7和-4

  【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。

  2.创设情境 引入课题

  问题一:两个有理数相加,有多少种不同的'情形?

  答:正+正,负+负,正+负,正+0,负+0,0+0.

  【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。

  问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?

  请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)

  师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?

  (出示课题)

  【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。

  (二)分析问题探究新知

  问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?

  学生们各抒己见,总结法则。

  1、 同号两数相加,取相同的符号,并把绝对值相加。

  2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。

  3、 一个数同0相加,仍得这个数

  老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。

  【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力

  (三)运用新知深入体会

  例1计算(-3)+(-9).

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

  解:(-3)+(-9)=-12.

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

  解题时,先确定和的符号,后计算和的绝对值.

  课堂练习:

  1.计算(口答)

  (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

  (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

  2.计算

  (1)5+(-22); (2)(-1.3)+(-8)

  (3)(-0.9)+1.5; (4)2.7+(-3.5)

  3.用“>”或“<”填空:

  (1)如果a>0,b>0,那么a+b____0;

  (2) 如果a<0,b<0,那么a+b____0;

  (3) 如果a>0,b<0,|a|>|b|,那么a+b____0;

  (4) 如果a<0,b>0, |a|<|b|,那么a+b____0;

  【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。

  问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?

  (1)如果a>0,b>0,那么a+b=+(|a|+|b|)

  (2) 如果a<0,b<0,那么a+b=-(|a|-|b|)

  (3) 如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)

  (4) 如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)

  (5)a+0=a.

  【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。

  (四)延伸拓展敢于挑战

  问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?

  问题六:小学学过的运算律是否适用于有理数的加法?

  【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。

  (五)归纳总结感受思想

  (1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?

  (2)本节课你学习到了哪些数学思想方法?

  【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。

  (六)布置作业

  (1)P56 习题1、3

  (2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。

  【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。

  七、设计说明

  1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;

  2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。

  3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。

  4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。

《有理数》教案设计13

  教学目标

  1,在现实背景中理解有理数加法的意义。

  2,经历探索有理数加法法则的过程,理解有理数的加法法则。

  3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。

  4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。

  5,在教学中适当渗透分类讨论思想

  教学难点

  异号两数相加

  知识重点

  和的符号的确定

  教学过程

  (师生活动)设计理念

  设置情境

  引入课题回顾用正负数表示数量的实际例子;

  在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?

  师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。

  (出示课题)让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。

  分析问题

  探究新知如果是球队在某场比赛中上半场失了两个球,下

  半场失了3个球,那么它的得胜球是几个呢?算式应该

  怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?

  (学生思考回答)

  思考:请同学们想想,这支球队在这场比赛中还可

  能出现其他的什么情况?你能列出算式吗?与同伴交流。

  学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。

  2,借助数轴来讨论有理数的加法。I

  一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作—5m。

  (1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。

  (2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)

  (3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?

  (4)在学生归纳的基础上,教师出示有理数加法法则。

  有理数加法法则:

  1,同号两数相加,取相同的符号,并把绝对值相加。

  2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

  3,一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。

  估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。

  但不能把它归的为同号异号等三类,所以此处需教师。点拔、指扎,体现教师的引导者作用。

  ①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的`终点。②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。③让学生感受“数学模型”的思想。④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律

  解决问题解决问题

  例1计算:

  (1)(—3)+(—9);(2)(—5)+13;

  (3)0十(—7);(4)(—4。7)+3。9。

  教师板演,让学生说出每一步运算所依据的法则。

  请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)

  例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数。

  (让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)

  学生活动:请学生说一说在生活中用到有理数加法的例子。注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位。(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过

  程写完整。(3)体现化归思想。(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算。

  拓宽学生视野,让学

  生体会到数学与生活的密切联系。

  课堂练习教科书第23页练习

  小结与作业

  课堂小结通过这节课的学习,你有哪些收获,学生自己总结。

  本课作业必做题:阅读教科书第20~22页,教科书第31习题1。3第1、12、第13题。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。

  2,注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)。如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。

  3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听

  别人的意见和建议。

  附板书:1。3。1有理数的加法(一)

《有理数》教案设计14

  一、知识与技能

  理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算。

  二、过程与方法

  经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力。

  三、情感态度与价值观

  体会数学与现实生活的联系,提高学生学习数学的兴趣。

  教学重点、难点与关键

  1.重点:有理数加减法统一为加法运算,掌握有理数加减混合运算。

  2.难点:省略括号和加号的加法算式的运算方法。

  3.关键:理解加减混合运算可以统一成加法,以及正确理解省略加号的有理数加法形式。

  教具准备

  投影仪。

  四、教学过程

  一、复习提问,引入新课

  1.叙述有理数的加法、减法法则。

  2.计算。

  (1)(-8)+(-6); (2)(-8)-(-6); (3)8-(-6);

  (4)(-8)-6; (5)5-14.

  五、新授

  我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的.加减混合运算。

  例6:计算:(-20)+(+3)-(-5)-(+7)。

  分析:这个式子中有加法,也有减法,可以按照运算顺序,从左到右逐一加以计算。也可以用有理数的减法法则,则它改写为(-20)+(+3)+(+5)+(-7)使问题转化为几个有理数的加法。

  解:(-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7)

  =[(-20)+(-7)]+[(+3)+(+5)]

  =-27+(+8)

  =-19

  把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。

  归纳:加减混合运算可以统一为加法运算。

  用式子表示为a+b-c=a+b+(-c)。

  式子(-20)+(+3)+(+5)+(-7)是-20,+3,+5,-7这四个数的和,为了书写简单,可以省略式子中的括号和加号,把它写为:-20+3+5-7.

  这个式子读作负20、正3、正5、负7的和或读作负20加3加5减7。

  例6的运算过程也可简写为:

  (-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7) (加减法统一为加法)

  =-20+3+5-7 (省略式子中的括号和括号前面的加号)

  =-20-7+3+5 (加法交换律交换时,要连同符号一起交换)

  =-19 (异号两数相减)

  六、巩固练习

  1.课本第24页练习。

  (1)题是已写成省略加号的代数和,可运用加法交换律、结合律。

  原式=1+3-4-0.5=0-0.5=-0.5

  (2)题运用加减混合运算律,同号结合。

  原式=-2.4-4.6+3.5+3.5=-7+7=0

  (3)题先把加减混合运算统一为加法运算。

  原式=(-7)+(-5)+(-4)+(+10)

  =-7-5-4+10 (省略括号和加号)

  =-16+10

  =-6

  七、课堂小结

  有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:(1)凡相加是整数的,可以先加;(2)分母相同或易于通分的分数相结合;(3)有互为相反数可以互相抵消的,先相加;(4)正、负数分别相加。总之要认真观察,灵活运用运算律。

  八、作业布置

  1.课本第25页第26页习题1.3第5、6、13题。

  九、板书设计:

  1.3.2 有理数的减法(2)

  第四课时

  1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。

  归纳:加减混合运算可以统一为加法运算。

  用式子表示为a+b-c=a+b+(-c)。

  2、随堂练习。

  3、小结。

  4、课后作业。

  十、课后反思

《有理数》教案设计15

  三维目标

  一、知识与技能

  经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。

  二、过程与方法

  经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。

  三、情感态度与价值观

  培养学生积极探索精神,感受数学与实际生活的联系。

  教学重、难点与关键

  1.重点:应用法则正确地进行有理数乘法运算。

  2.难点:两负数相乘,积的符号为正与两负数相加和的符号为负号容易混淆。

  3.关键:积的.符号的确定。

  教具准备

  投影仪。

  四、教学过程

  一、引入新课

  在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?

  五、新授

  课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O.

  (1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

  (2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

  (3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

  (4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

  分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。