当前位置:好文网>实用文>教学反思>不等式教学反思

不等式教学反思

时间:2024-06-09 17:18:02 教学反思 我要投稿
  • 相关推荐

不等式教学反思

  作为一位到岗不久的教师,我们的任务之一就是课堂教学,写教学反思可以很好的把我们的教学记录下来,教学反思要怎么写呢?以下是小编整理的不等式教学反思,欢迎阅读与收藏。

不等式教学反思

不等式教学反思1

  一、教材内容的地位与作用:

  函数与方程、不等式在初中数学教学中有重要地位,函数是初中数学教学的重点和难点之一。方程、不等式与函数综合题,历年来是中考热点之一,主要采用以函数为主线,将函数图象、性质和方程及不等式的相关知识进行综合运用,渗透数形结合的思想方法。

  二、教学设计的整体构思

  ㈠ 教学目标

  1.复习和巩固一次函数和二次函数的图象与性质等基础知识。

  2.加强一次函数,一次方程和一元一次不等式三者的联系

  3.加强二次函数,一元二次方程和一元二次不等式三者的联系

  4.会结合自变量的取值范围求实际问题的最值

  ㈡ 教学重点

  1、函数、方程和不等式三者的区别与联系。

  2、运用函数、方程与不等式的关系及转化的思想方法解决函数与方程、不等式的综合问题。

  ㈢ 教学难点

  对实际问题中二次函数的最值要结合自变量的取值范围及图像来解决,从而深化数形结合的思想方法。

  ㈣ 学情分析

  教学班为中等层次的班,学生的学习基础比较均衡,学习积极性高,但是拔尖的学生不多。本节课在学生第一轮复习了函数、方程、不等式有关知识的基础上,进一步研究解决函数、方程、不等式之间的联系与区别及三者相结合的综合题。

  ㈤ 教学策略

  以学生练习为主,讲练结合,通过环节二、环节三的练习及课件突出本节课的重点:加强了函数、方程和不等式三者的区别与联系,从而渗透数形结合和转化的思想。利用环节四让学生学会用函数和方程的思想来构建函数模型来解决实际问题,通过小组讨论,用集体的智慧突破本节课的难点:求实际问题的最值时,需对所得的函数结合自变量的取值范围及结合图像才能求得最值,从而让学生更深刻体会数形结合的数学思想。

  三、教学反思:

  ㈠ 结构严谨,环环相扣,层现清晰

  本节课用五个环节组织教学。环节一是知识的回顾,这部分复习了函数、方程、不等式的基础知识,引入部分简单过渡,激发兴趣,为后面作铺垫。环节二的问题1是有关一次函数,一次方程和一元一次不等式的联系与区别,环节三的问题2是二次函数、一元二次方程和一元二次不等式之间的相互转化,这两个环节的两个问题是姐妹题,加强了学生对一次函数和二次图象的认识以及通过观察函数图象得出变量的范围,渗透数形结合的思想,同时由环节二的一次函数过渡到环节三的二次函数,由浅入深地把函数、方程、不等式三者联系起来。然后过渡到本节课的难点――环节四:二次函数的实际应用。环节四是实际问题的应用及其变式训练,这一环节的训练,旨在拓展深化,发展学生智能,让学生学会用函数与方程的思想来解决实际问题,通过对实际问题的分析,寻找出变量之间的函数关系,并能利用函数的图象和性质求出实际问题的答案。体会函数模型是解决实际问题的一种重要的数学模型,便于获得解决问题的经验。养成积极探索的学习态度,感受数学的应用价值,培养学数学用数学的观念,这也是本节课的知识点的拓展与提升。最后环节五的总结提高部分由学生讨论归纳,对整节课的内容进行回顾整理,让每一部分的内容重新清晰呈现。五个环节紧密联系,层层递进,环环相扣,清晰明了地突破重难点。

  ㈡ 教师为主导、学生为主体,把课堂还给学生

  在教学的过程中,学生是教学的主体,所以发挥学生的主动性相当的重要。本节课是在学生第一轮复习了函数、方程、不等式有关知识的基础上教学的,是学生学习的又一次综合与扩展。如何引导学生进一步研究解决函数、方程、不等式之间的联系与区别及三者相结合的综合题,是我设计本堂课时应特别注意的。我设计的教学方法是讲练结合,学生练习用了20-22分钟,学生小组讨论3-4分钟,老师大概讲了12-15分钟,引导.提问个别学生分析问题及回答问题约8-10分钟,整节课以学生的练习为主,留充分的时间和空间给学生思考。教师精讲多练,且能讲在关键处,注重引导学生分析问题并解决问题,师生互动较多,教学方式灵活多样,充分调动了学生学习的积极性。整节课充分体现了新课标的教学理念:教师为主导、学生为主体,把课堂还给学生。

  ㈢ 及时小结,及时反馈

  课堂教学是一个有序的.教学过程,教材知识的内在逻辑顺序和学生认知结构发展的顺序决定了教学过程必须是一个循序渐进、环环相扣的过程。因此,对于每一环节的教学,我都能恰到好处进行点评、反馈及小结,总结该环节用到的知识点及其解决问题的方法与技巧,对教学目标中的思想内容、能力要求、知识要点进行简明扼要的梳理概括,这样既可概括前一个问题的主要内容,有助于学生理解、掌握,又能巧妙地引出后一个问题的讲解。起到承前启后的作用,使知识有机衔接起来,形成一个有序的整体,既可使整堂课的教学内容系统化,增强学生的整体印象,又可以促使学生的思维不断深化,诱发继续学习的积极性。

  ㈣ 课件精美,提高效率

  本课节主要是以PPT载体,中间穿插了几何画板,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启发学生思维。通过课件,充分体现了数形结合,突出了本节课的重点:方程或不等式的解实质就是函数值y取特殊值时对应自变量x的取值.从而使题目化难为简。另外对于一些重要地方用批注形式加以解释,引起学生的有意注意,让学生更容易理解、印象更深刻,大大提高了课堂教学的有效性。

  ㈤ 小组讨论,突破难点

  本节课的最亮点是环节四问题3的变式练习“若把‘墙长20m’改为‘墙长15m’,情况又会如何?”的处理,我采用的方法是让学生通过小组讨论找出本题与问题3在解答上的异同,并要求学生把不同之处用另一颜色笔在问题3的求解过程的基础上改动,然后引导学生(个别提问)分析讲解,老师再用PPT演示加以点评。学生通过此变式训练能发现当二次函数顶点坐标的纵坐标不是最值时,需对所得的函数结合自变量的取值范围及结合图像才能求得最值,学生更深刻地体会了数形结合的数学思想。数学课堂上也显示出情感态度价值:用集体的智慧突破本节课的难点,学生有了成功的喜悦。

  四、不足之处

  环节三的巩固练习的反馈,我采用课件演示讲解。如果用实物投影来点评学生的答案,更深入一点讲解,教学效果会更好。

不等式教学反思2

  不等式教学反思

  不等式一章,对学生来说是难点,把握好教学很关键,我经过教学反思见下。

  1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分求出解集,这是最容易理解的方法,也是最适用的方法。用“大大取较大、小小取较小、大小小大取中间、大大小小取不了”求解不等式,我认为减轻学生的学习负担,有易于培养学生的数形结合能力。在教学中我要求学生两者皆用。

  2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。

  3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的要求,重点加强文字与符号的联系,利用题目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。

  4、本节课 课堂容量(安排的例题的题量太多)偏大,而且在思维上也有比较特殊的地方,从而导致学生在课堂上的`思考的时间不够,课堂时间比较紧张。因此今后在课时的安排上要尽可能的安排更多的课时,以减少每一节课的课堂容量,给学生更多的思考时间和空间,提高课堂的效果。同时还要重视思考题的作用,因为班上有一部分同学体现出基础比较扎实,而且对数学也比较有兴趣,出一些比较难的思考题,能够让这部分学有余力的同学能有所提高。

  5.从课堂的效果来看学生对象客观题这样的题型(如:选择题、填空题)用特殊方法解题的思维还不够,他们总是担心会出问题,特别是选择题缺乏比较和分析的能力,因为选择题是一种比较特殊的题型,它的特殊性在于这类题目的答案是已知的,有的学生在做题的时候根本就不看题目中的四个选择答案,实际的解题过程中对于选择题来讲能把四个答案选项分析清楚对提高解题的速度和准确性是很有好处的。

  但本节课中出现的解客观题的一些特殊的方法在解与不等式有关的题目时特别的有效,但是如果不等式的问题中出现了分类讨论的情况,特殊的方法就有它的局限性,这时就需要学生能够灵活处理了。问题中出现了分类讨论的题目一般来讲都是比较难的题目,教学上我的处理是在教学的过程中如果出现了这类问题就具体跟学生讲解,在学期末的复习时候再跟学生总结。因此要求学生在使用特殊方法教育。

不等式教学反思3

  本节课是以一元一次方程为脚手架,来学习一元一次不等式的概念及解法。

  教学目标明确,理念新颖,整个教学环节充分体现了学生的主体地位,并注重对数学思想方法的渗透。

  通过创设与学生实际生活联系密切的问题情景,并由学生根据自己的经验分别列出一元一次方程和一元一次不等式,从中发现它们之间的内在联系,从而确定含括号的一元一次不等式的解法步骤,为探究含分母的一元一次不等式奠定了扎实的基础。

  在探究含分母的一元一次不等式解法中,一连抛出几个问题,引发学生思考,小组合作,谈论交流,归纳出解法步骤,这些活动中,真正凸显出学生是学习的主人。

  拓广探索让学生巩固了方程和不等式之间的'内在联系,思维迁移开阔了学生的视野,使学生思维更加深刻灵活。

  另外,根据本节课内容特点,教师无需过多讲解,只需适时引导点拨,组织学生活动,有意识的让学生去观察比较、讨论归纳、展示讲解、质疑补充等,给予他们更多展示自己的机会和舞台。这是本节课的成功之处。

  不足之处是时间安排不够科学合理,学生展示时间过长。

不等式教学反思4

  用函数的观点看方程(组)和不等式,是学生应该学会的一种数学思想方法。教学过程中要让学生理解一次函数与一元一次方程、一元一次不等式、二元一次方程组的内在联系,明白方程(组)、不等式与函数三者之间可以相互转化、相互渗透,让学生成为学习的主导者,主动去观察、分析、归纳与总结,得到更深刻、透彻的知识点,并且让学生在交流中体会成功。

  教学优点:

  1、能积极学习并采用多媒体课件进行授课。应用多媒体课件直观、明了的展示了一次函数与一元一次方程、一元一次不等式及二元一次方程的联系,且课堂容量大、课堂效率高。运用幻灯片让枯燥的理论知识直观、形象、生动起来,激发了学生学习的积极性。

  2、“数形结合”思想的完美体现。我能够利用一次函数图象从“形”方面直观地表示方程(组)和不等式的'解或解集的含义,反过来,又从“数”的方面来解释方程(组)的解及不等式的解集实质就是图象上对应点的自变量的取值或取值范围。这节课让学生充分感受到“数形结合”思想的重要性。

  教学不足:

  1、课堂容量有些大,学生组内讨论时间较少,学生单独回答问题的机会也有点少。

  2、缺乏对学困生的关注、指导和帮助。

  3、对学生语言表达能力估计过高,用函数观点解释方程、不等式,学生只可意会,不会言语。

不等式教学反思5

  在教学过程中,利用生活中的实际问题,使学生感知到要解决的问题同时满足两个约束条件,而两个约束条件都是不等式,这样,引入不等式组就比较自然;在探究“不等式组的解集”时,引导学生运用数形结合的方法,引起了学生探究的兴趣,学生小组合作探究,利用已有知识,很容易得出求不等式组解集的方法。用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法。根据不等式组的四种情况,引导学生结合数轴归纳出“同大取大、同小取小、大小小大取中间、大大小小无处找”的口诀求解不等式组,运用口诀的同时,头脑中想象数轴,使数形有机结合。

  通过对本节课系统的回顾,梳理,我发现部分学生在由实际问题抽象为数学模型的过程中,存在一定的困难,教师要适时给以恰当引导,发展学生分析问题和解决问题的能力,并给学困生提供更多发言的机会。学生的.学习积极性有很大的提高,学习效果较好。原本枯燥的、抽象的纯数学的知识通过与实际联系,利用数形结合,变得有趣、易懂。

不等式教学反思6

  学习了实际问题与一元一次不等式后,我发现在学生学习起来比较困惑,存在以下问题:

  1.找不出广泛应用题中的不等关系,要解广泛应用题时相等关系比较明确,而在不等式中不等关系不是那样的明确,所以不少学生不太理解,因而列不出不等式,所以也不会解不等式的应用题。

  2.一部分学生虽然能列出不等式,可是在解不等式时一直出现错误,特别是当不等工的两边都乘或除以一个负数时,学生一直记不住不等式的方向要改变,导致计算错误,这可能对不等式的性质没有真正理解吧。

  3.不少应用题求出不等式的'解集时往往都会根据题意,让求出不等式的整数解,到这时一部分学生往往不能准确的求出整数解,这可能是对不等式解集的取值范围不是太明白。

  教后反思:在以后的教学中做注意的是,让学生熟练掌握不等式的性质,并能真正理解,能准确无误的求出不等式的解集。多进行不等式应用题的练习,让学生逐步理解和掌握找不等关系的方法,从而熟练的掌握列不等式解应用题的。要加强一些基础概念的掌握理解,对于整数,正整数以一些大于小于等的数学语言,要让学生准确理解,不能含含糊糊。

不等式教学反思7

  本章的重点是一元一次不等式的解法,难点是:不等式的解集、不等式的性质及应用不等式解决实际问题的能力,特别是实际问题中的列不等式求解。

  1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法。至于有些课外书用“同大取大、同小取小、大小小大取中间、大大小小解不了”求解不等式,我认为增加学生的学习负担,不易于培养学生的数形结合能力。在教学中我要求学生在解不等式(组)的`时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想。

  2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。要注意对一元一次方程相关知识的复习,让学生进行比较、归纳,理解它与一元一次不等式的的联系与区别(特别强调“不等式两边同时乘以或除以一个负数时,不等号方向改变”),教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。

  3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的要求,陷入旧教材“繁、难、偏、旧”的模式,重点加强文字与符号的联系,利用题目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。

  4、各种书籍出现的应用题里面文字有的自相矛盾,教学时教师要合理利用和指导学生选取辅导书,如课本“以外”与“至少”等。

不等式教学反思8

  《实际问题与一元一次不等式》是一节有难度的重量级实际应用课。在本节课的教学中,我先以购票问题送学生一个惊喜,让学生感受了数学魅力,激发了探究兴趣;同时又复习了不等式的性质,为解不等式要变号埋下伏笔。在较复杂的超市购物获得优惠的问题中,设计试购活动精彩纷呈,前二件商品的试购既让学生深入理解题意,体验优惠这一基本事实,又使分类讨论呼之欲出;后二件商品的试购既让学生的猜测不断清晰,又引发第二次分类,同时呈现方程与不等式,为类比提供了平台。通过修改关系符号类比方程解不等式,并进一步挑战带有中括号的`不等式的解法,实现跨越发展。而最后购车问题内化前面的知识与技能,同时又探究不等式的解如何转化为实际问题的解。三个问题层次分明,一线串珠,让数学的魅力在学生心中不断加深,数学源于生活又服务于生活的感悟不断积淀。而秘籍的总结形式增加趣味的同时,加深学生建模印象。

  改进之处:因在演播室录课,面对镜头与灯光,学生有些拘谨。由于时间关系,在表达本课感受时没有让更多的学生参入,结尾有些仓促。在以后的教学中,我将关注学生的学习动态,随时注意学生专注性及学习习惯的培养。

不等式教学反思9

  不等式是刻画现实世界中量与量之间不等关系的有效数学模型,一元一次不等式是表示不等关系的最基本的工具,是学生学习其他相关数学知识的基础。

  现行“苏科版”教材从身边的实际问题中建立不等式,从这些具体问题中的数量大小关系使学生了解不等式的意义,理解不等式相关概念,并探索了不等式的基本性质。

  不等式的基本性质的教学,是分成两个阶段进行的。对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。

  不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的`理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。

  解一元一次不等式的基础是一元一次方程的解法,两者基本类似,唯一不同的是不等式的两边同时乘以或除以一个负数时,不等号方向需要改变。在进行类比解一元一次方程与解一元一次不等式时既要说明它们的相同点,更要使学生明确它们的不同点,揭示各自的特殊性,从类比中进一步领会不等式的有关知识的特点和本质。

  在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

  本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

不等式教学反思10

  对于教师来说,“反思教学”就是教师自觉地把自己的课堂教学实践,作为认识对象而进行全面而深入的冷静思考和总结,它是一种用来提高自身的业务,改进教学实践的学习方式,不断对自己的教育实践深入反思,积极探索与解决教育实践中的一系列问题。简单地说,教学反思就是研究自己如何教,自己如何学。教中学,学中教。

  在讲完不等式的性质后,我根据学生情况安排三个课时学习解一元一次不等式,我们的设想是:第一课时:在简单理解不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一元一次不等式,注意其中的区别与联系(即类比思想),学会用数轴直观的表示不等式的解集(数形结合思想);第二课时:熟练解一元一次不等式;第三课时:一元一次不等式的应用。

  1、在学习本节时,要与一元一次方程结合起来,用比较、类比的方法去学习,弄清其区别与联系。

  2、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性。在数轴上表示不等式的解集是数形结合的具体体现。

  3、熟练掌握不等式的基本性质,特别是性质3.不等式的性质是正确解不等式的基础

  这节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,经历探索求一元一次不等式组解集的过程,并培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,从而使他们能准确的解一元一次不等式。

  本节课我觉得自己成功的地方有以下几点:

  1、出新:“兴趣是最好的老师”一节课如果能够从开始就可以吸引学生的注意,那么这节课就是一节好课。开篇用人机大战中的阿尔法狗来引起学生的注意。同时以挑战的语气激励起学生的好胜心和自豪感,为课堂注入了活力。保证了整节课学生的主动性。在练习阶段,以小组为单位,模仿河南电视台的汉字英雄栏目。让学生自己挑选题目,小组为单位进行挑战,其他小组进行挑毛病。既锻炼了学生的`知识掌握能力,也锻炼了学生的集体主义精神和合作意识。同时也锻炼了学生的观察敏锐和专注程度。

  2、整体的思路比较清晰:阿尔法狗的提问复习了不等式的相关内容,接下来让学生通过自学、小组讨论掌握一元一次不等式的定义和结构特征。然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业。整个流程比较流畅、自然;

  3、精心处理教材:我选的例题和练习刚好囊括了解一元一次不等式不同情况,以便为后面的归纳小结做好准备;

  4、教态自然、大方、亲切。能给学生以鼓励,能较好地激发学生的学习兴趣;比如在知识梳理环节李知希同学说的解一元一次不等式的步骤和课本上的不一样,杨振坤同学不同的解法,我觉得他们非常善于总结、类比和思考,所以我及时予以肯定;

  5、实效。本节课重点是学会解一元一次不等式。在课堂教学过程中,让学生通过自我思考、小组讨论、师生共议、例题展示等环节让学生掌握住一元一次不等式的解法步骤。同时通过快速的训练让学生把握住一元一次不等式的解法。把学生容易出错的地方让学生反复的训练。攻克难点,总体的收效比较好。

  本节课较好的方面:

  1、 本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;

  2、 课程内容前后呼应,前面练习能够为后面的例题作准备

  3、 能安排有小测等对学生学习的知识进行检查;

  不足方面:

  1、引入部分练习所用时间太长,讲评一元一次不等式的概念太细致,导致了后段时间紧,部分内容不能完成

  2、课容量少,害怕学生听不懂、学不会,所以上课时喜欢给学生反复讲,结果课堂上大部分时间由我占据,而留给学生自己独立思考,讨论的时间较少。

  我深感,只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。这说明,一种新的教学理念要真正成为师生的教育行为,还有很长的路要走。我将和我的学生在这一探索过程中不断努力前行,总之,我们在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须多做一些事,例如精心设计适合学生的教学环节,多思考一些学生所想的,真正做好学生前进道路上的领路人。

不等式教学反思11

  在教学过程中看出,由于学生的知识结构的差异思维品质的不同,其解题的方法也不相同。上课时,我面对学生各种解法,让同学们先小组讨论,充分暴露思维过程,然后全班讨论,对各种解法及思维过程给与评价。由于启发得好,本节课的教学效果感觉良好,在学习知识的同时发展了学生的思维。下面就如何发展学生的思维谈谈自己的一些看法。

  1、暴露思维过程,发展学生思维。

  暴露思维过程是发展学生思维的有效手段。教学活动中,师生双方都必须充分暴露思维过程。教师经常把自己置于困境中,然后再现从中走出来的过程,让学生看到教师的思维过程。学生自己动脑、动手,在尝试、探索的过程中,鼓励学生发表自己的看法,充分暴露学生的思维,通过多维的交流,从而找到解决问题的方法。我们要在暴露学生思维的过程中,评价学生的思路,改善学生的思维品质,着重培养思维的敏捷和灵活,使他们在分析中学会思考,需要把面对的问题通过转化、分析、综合、假设、对比等中求得简捷,在运用中变得灵活,在疏漏后学得缜密。

  2、抓住知识间的内在联系,发展学生思维。

  系统性、逻辑性是数学的主要特征之一。数学本身的知识间的内在联系是很紧密的,各部分知识都不是孤立的,而是一个结构严密的整体。数学教学主要是思维活动的教学,只有根据学生的认知特点,引导学生按照思维过程的规律进行思维活动,才能提高学生的思维能力。为此,教学应从较好的知识结构出发,把教学的重点放在引导学生分析数量关系上,依据知识之间的逻辑关系和迁移条件,引导学生抓住旧知识与新知识的连接点,抓住知识的`生长点,抓住逻辑推理的新起点。这样就自然地把新的知识与已有的知识科学地联系起来。新的知识一经建立,便会纳入到学生原有的认知结构中去,建成新的知识系统。

  3、激发求知欲望,发展学生思维

  在课堂教学中,教师生动活泼的教学语言,具体的教学内容,灵活多样的教学形式,在唤起学生数学思维情趣的基础上,适时适度地调控,让学生在"心求通而未通"、"口欲书而不能"的"愤徘"状态之中,这种"道弗牵、强弗抑、开弗达"的思维激发,有助于学生的数学思维欲望的提高,有助于学生探究数学知识,数学问题的兴趣。这样,学生的思维活动也就启动、开展,学生的数学思维能力和素质得到发展,得到提高。

不等式教学反思12

  数学来源于生活,又应用于生活。因此我们在认识不等式的教学过程中大量地运用现实生活情景:如跷跷板问题、上学迟到等实际情境引入与学生共同探索,让学生在探索中发现新的知识,认识不等式,让学生意识到不等关系和相等关系都是现实生活中的重要数量关系,意识到数学就在我们身边,离我们是那么的近,增强学生学习的兴趣与自信心。

  本节的`主要内容是一元一次不等式解法及其简单应用。这是继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是培养学生分析问题和解决问题能力的重要内容。本节的教学设计主要是改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放性教学。

  不等式的基本性质和解一元一次不等式,是一些基本的运算技能,也是学生以后学习一元二次方程、函数,以及进一步学习不等式知识的基础。由于不等式是刻画现实世界中量与量之间变化规律的重要模型,因此,我们在一元一次不等式的应用教学中通过与生活贴近的具体例子渗透量与量之间内在联系,帮助学生从整体上认识不等式,感受不等式的作用,进一步提高学生分析问题解决问题的能力,增强学生学数学、用数学的意识。

不等式教学反思13

  本节课我采用从生活中假设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

  课堂开始通过智力比拼引入课题。激发学生的学习兴趣以及积极性。通过简单的问题引导学生通过探究得出不等式的性质1.然后通过比较简单的不等式的变化,探究出不等式的性质2和3.在这一环节上,留给学生思考的时间有点少。

  接下来的问题设计是为了类比等式的基本性质,研究不等式的`性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。

  练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。同时使学生体会数学中的分类讨论思想。

  本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题。比如探究的问题比较简单,在使学生体会类比思想以及分类讨论思想时,也可以通过问题设计体会数形结合的思想。但是怕学生接受

  不了高难度的题目,因此在设计教案时经过反复思考,终究没有选择类似的题目。终究是不放心学生。我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。

不等式教学反思14

  本节教学,有以下几点特别值得回味。

  1、从生活中来回到生活中去的教学设计

  新课标指出:“数学的教学活动必须建立在学生的认知发展水平和已有知识经验基础上。”心理学的研究表明,学习内容和学生生活背景、知识背景越接近,学生自觉接纳知识懂得的程度就越高。导入的恰当、合理会引起学生极大的学习兴趣,对知识的衔接和理顺起到画龙点睛的作用,又对新知识起到设疑、点拔的作用。用学生身边感兴趣的实例过马路、跷跷板体验生活中的不等式,一方面引起学生的参与欲,另一方面也体现了知识拓展的需要。因为这样既可引出一元一次不等式的意义,又让学生产生学习不等式的需求,也使学生对解不等式的方法有了很自然的联想让学生充分感受到学习一元一次不等式的`必要性。使学生进一步认识到“数学来源于生活,反过来又为生活服务”,增强学好数学的信心与决定。

  2、重视数学思想方法的渗透

  数学思想方法是数学的灵魂,知识转化为能力的桥梁。在整节课的教学中都非常重视数学思想方法的渗透。学习不等式时,类比方程、不等式解集的概念,渗透“类比”思想。使学生在已有知识上进行迁移,在主动参与、探索交流中不知不觉学到了新知识。利用数轴求不等式的解集,渗透“数形结合”思想。掌握不等式的解集在数轴上的表示,利用数轴把解集讲解得非常透彻,使学生充分认识到“数形结合”思想方法的用处。列不等式解决实际问题,渗透“建模”思想,培养学生应用数学的意识。最后的小结,不是流俗的学习内容小结,而是思想方法的小结,它起到了提纲挈领,梳理总结的目的。

  3、重视数学的“再创造”

  课堂教学改革的宗旨和根本出发点是:改善和促进学生全面、持续、和谐地发展。建构主义理论强调学习的主动性、社会性和情景性,认为学习者不是知识信息的被动吸收者,而是主动积极的建构者。留给学生的作业:完成课外探究题,借助数轴归纳求不等式的解集一般规律。教学时重视了数学的“再创造”,由学生本人把需学的东西自己去发现和创造出来。

  学生的学习不再是一种被动地吸收知识,反复练习,强化储存知识的过程,而是通过反复研究、探索、思考、概括,亲身经历“再创造”的探究性学习过程,从而自主获得知识。

  总之,教学设计时体现新课程标准的思想和理念,注重知识与能力并重,培养发展学生自主探索的独立思考精神。

不等式教学反思15

  本节课由一次函数讨论了三个已书法家对象:一元一次方程、一元一冷饮不等式和二元一次方程组,这些不是新知识,但对其认识还有待于进一步深入,本节用函数的观点对它们进行分析,这种再认识不是简单的回顾复习,而是居高临下的进行动态分析。因此,教学中,一定要把握内容的要求尺度。通过 本节课的教学,应加强知识间横向和纵向的联系。发挥函数对相关内容的统作用,能用一冷饮函数的观点把以前学习的方程与不等式进行整合。

  本节课的教学发现:有一小部分的学生还是不懂得看函数不理解函数值大于0、小于0进所对应的自变量的值应如何看,如何写出满足条件的答案。因此,建议在教学过程中增加看图的练习题:知道函数值的范围求自变量的取值范围,知道自变量的取舍范围求函数值 的`范围等类型的题目。

  另外,运用所学知识解决实际问题是学生学习的目的,是重点,但也是学生的难点。尽管学生难接受,介是在教学的过程 中不要回避,要慢慢引导,加强训练,争取让学生能理解题目,掌握解题方法与技巧,从而提高技能。

《不等式教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【不等式教学反思】相关文章:

不等式教学反思03-27

不等式的性质教学反思03-28

不等式的性质教学反思05-23

基本不等式教学反思10-12

解不等式组教学反思10-27

《基本不等式》教学反思03-28

《不等式与实际问题》教学反思04-22

不等式及其解集教学反思04-18

基本不等式教学反思11篇04-09

基本不等式教学反思12篇02-25

不等式教学反思

  作为一位到岗不久的教师,我们的任务之一就是课堂教学,写教学反思可以很好的把我们的教学记录下来,教学反思要怎么写呢?以下是小编整理的不等式教学反思,欢迎阅读与收藏。

不等式教学反思

不等式教学反思1

  一、教材内容的地位与作用:

  函数与方程、不等式在初中数学教学中有重要地位,函数是初中数学教学的重点和难点之一。方程、不等式与函数综合题,历年来是中考热点之一,主要采用以函数为主线,将函数图象、性质和方程及不等式的相关知识进行综合运用,渗透数形结合的思想方法。

  二、教学设计的整体构思

  ㈠ 教学目标

  1.复习和巩固一次函数和二次函数的图象与性质等基础知识。

  2.加强一次函数,一次方程和一元一次不等式三者的联系

  3.加强二次函数,一元二次方程和一元二次不等式三者的联系

  4.会结合自变量的取值范围求实际问题的最值

  ㈡ 教学重点

  1、函数、方程和不等式三者的区别与联系。

  2、运用函数、方程与不等式的关系及转化的思想方法解决函数与方程、不等式的综合问题。

  ㈢ 教学难点

  对实际问题中二次函数的最值要结合自变量的取值范围及图像来解决,从而深化数形结合的思想方法。

  ㈣ 学情分析

  教学班为中等层次的班,学生的学习基础比较均衡,学习积极性高,但是拔尖的学生不多。本节课在学生第一轮复习了函数、方程、不等式有关知识的基础上,进一步研究解决函数、方程、不等式之间的联系与区别及三者相结合的综合题。

  ㈤ 教学策略

  以学生练习为主,讲练结合,通过环节二、环节三的练习及课件突出本节课的重点:加强了函数、方程和不等式三者的区别与联系,从而渗透数形结合和转化的思想。利用环节四让学生学会用函数和方程的思想来构建函数模型来解决实际问题,通过小组讨论,用集体的智慧突破本节课的难点:求实际问题的最值时,需对所得的函数结合自变量的取值范围及结合图像才能求得最值,从而让学生更深刻体会数形结合的数学思想。

  三、教学反思:

  ㈠ 结构严谨,环环相扣,层现清晰

  本节课用五个环节组织教学。环节一是知识的回顾,这部分复习了函数、方程、不等式的基础知识,引入部分简单过渡,激发兴趣,为后面作铺垫。环节二的问题1是有关一次函数,一次方程和一元一次不等式的联系与区别,环节三的问题2是二次函数、一元二次方程和一元二次不等式之间的相互转化,这两个环节的两个问题是姐妹题,加强了学生对一次函数和二次图象的认识以及通过观察函数图象得出变量的范围,渗透数形结合的思想,同时由环节二的一次函数过渡到环节三的二次函数,由浅入深地把函数、方程、不等式三者联系起来。然后过渡到本节课的难点――环节四:二次函数的实际应用。环节四是实际问题的应用及其变式训练,这一环节的训练,旨在拓展深化,发展学生智能,让学生学会用函数与方程的思想来解决实际问题,通过对实际问题的分析,寻找出变量之间的函数关系,并能利用函数的图象和性质求出实际问题的答案。体会函数模型是解决实际问题的一种重要的数学模型,便于获得解决问题的经验。养成积极探索的学习态度,感受数学的应用价值,培养学数学用数学的观念,这也是本节课的知识点的拓展与提升。最后环节五的总结提高部分由学生讨论归纳,对整节课的内容进行回顾整理,让每一部分的内容重新清晰呈现。五个环节紧密联系,层层递进,环环相扣,清晰明了地突破重难点。

  ㈡ 教师为主导、学生为主体,把课堂还给学生

  在教学的过程中,学生是教学的主体,所以发挥学生的主动性相当的重要。本节课是在学生第一轮复习了函数、方程、不等式有关知识的基础上教学的,是学生学习的又一次综合与扩展。如何引导学生进一步研究解决函数、方程、不等式之间的联系与区别及三者相结合的综合题,是我设计本堂课时应特别注意的。我设计的教学方法是讲练结合,学生练习用了20-22分钟,学生小组讨论3-4分钟,老师大概讲了12-15分钟,引导.提问个别学生分析问题及回答问题约8-10分钟,整节课以学生的练习为主,留充分的时间和空间给学生思考。教师精讲多练,且能讲在关键处,注重引导学生分析问题并解决问题,师生互动较多,教学方式灵活多样,充分调动了学生学习的积极性。整节课充分体现了新课标的教学理念:教师为主导、学生为主体,把课堂还给学生。

  ㈢ 及时小结,及时反馈

  课堂教学是一个有序的.教学过程,教材知识的内在逻辑顺序和学生认知结构发展的顺序决定了教学过程必须是一个循序渐进、环环相扣的过程。因此,对于每一环节的教学,我都能恰到好处进行点评、反馈及小结,总结该环节用到的知识点及其解决问题的方法与技巧,对教学目标中的思想内容、能力要求、知识要点进行简明扼要的梳理概括,这样既可概括前一个问题的主要内容,有助于学生理解、掌握,又能巧妙地引出后一个问题的讲解。起到承前启后的作用,使知识有机衔接起来,形成一个有序的整体,既可使整堂课的教学内容系统化,增强学生的整体印象,又可以促使学生的思维不断深化,诱发继续学习的积极性。

  ㈣ 课件精美,提高效率

  本课节主要是以PPT载体,中间穿插了几何画板,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启发学生思维。通过课件,充分体现了数形结合,突出了本节课的重点:方程或不等式的解实质就是函数值y取特殊值时对应自变量x的取值.从而使题目化难为简。另外对于一些重要地方用批注形式加以解释,引起学生的有意注意,让学生更容易理解、印象更深刻,大大提高了课堂教学的有效性。

  ㈤ 小组讨论,突破难点

  本节课的最亮点是环节四问题3的变式练习“若把‘墙长20m’改为‘墙长15m’,情况又会如何?”的处理,我采用的方法是让学生通过小组讨论找出本题与问题3在解答上的异同,并要求学生把不同之处用另一颜色笔在问题3的求解过程的基础上改动,然后引导学生(个别提问)分析讲解,老师再用PPT演示加以点评。学生通过此变式训练能发现当二次函数顶点坐标的纵坐标不是最值时,需对所得的函数结合自变量的取值范围及结合图像才能求得最值,学生更深刻地体会了数形结合的数学思想。数学课堂上也显示出情感态度价值:用集体的智慧突破本节课的难点,学生有了成功的喜悦。

  四、不足之处

  环节三的巩固练习的反馈,我采用课件演示讲解。如果用实物投影来点评学生的答案,更深入一点讲解,教学效果会更好。

不等式教学反思2

  不等式教学反思

  不等式一章,对学生来说是难点,把握好教学很关键,我经过教学反思见下。

  1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分求出解集,这是最容易理解的方法,也是最适用的方法。用“大大取较大、小小取较小、大小小大取中间、大大小小取不了”求解不等式,我认为减轻学生的学习负担,有易于培养学生的数形结合能力。在教学中我要求学生两者皆用。

  2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。

  3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的要求,重点加强文字与符号的联系,利用题目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。

  4、本节课 课堂容量(安排的例题的题量太多)偏大,而且在思维上也有比较特殊的地方,从而导致学生在课堂上的`思考的时间不够,课堂时间比较紧张。因此今后在课时的安排上要尽可能的安排更多的课时,以减少每一节课的课堂容量,给学生更多的思考时间和空间,提高课堂的效果。同时还要重视思考题的作用,因为班上有一部分同学体现出基础比较扎实,而且对数学也比较有兴趣,出一些比较难的思考题,能够让这部分学有余力的同学能有所提高。

  5.从课堂的效果来看学生对象客观题这样的题型(如:选择题、填空题)用特殊方法解题的思维还不够,他们总是担心会出问题,特别是选择题缺乏比较和分析的能力,因为选择题是一种比较特殊的题型,它的特殊性在于这类题目的答案是已知的,有的学生在做题的时候根本就不看题目中的四个选择答案,实际的解题过程中对于选择题来讲能把四个答案选项分析清楚对提高解题的速度和准确性是很有好处的。

  但本节课中出现的解客观题的一些特殊的方法在解与不等式有关的题目时特别的有效,但是如果不等式的问题中出现了分类讨论的情况,特殊的方法就有它的局限性,这时就需要学生能够灵活处理了。问题中出现了分类讨论的题目一般来讲都是比较难的题目,教学上我的处理是在教学的过程中如果出现了这类问题就具体跟学生讲解,在学期末的复习时候再跟学生总结。因此要求学生在使用特殊方法教育。

不等式教学反思3

  本节课是以一元一次方程为脚手架,来学习一元一次不等式的概念及解法。

  教学目标明确,理念新颖,整个教学环节充分体现了学生的主体地位,并注重对数学思想方法的渗透。

  通过创设与学生实际生活联系密切的问题情景,并由学生根据自己的经验分别列出一元一次方程和一元一次不等式,从中发现它们之间的内在联系,从而确定含括号的一元一次不等式的解法步骤,为探究含分母的一元一次不等式奠定了扎实的基础。

  在探究含分母的一元一次不等式解法中,一连抛出几个问题,引发学生思考,小组合作,谈论交流,归纳出解法步骤,这些活动中,真正凸显出学生是学习的主人。

  拓广探索让学生巩固了方程和不等式之间的'内在联系,思维迁移开阔了学生的视野,使学生思维更加深刻灵活。

  另外,根据本节课内容特点,教师无需过多讲解,只需适时引导点拨,组织学生活动,有意识的让学生去观察比较、讨论归纳、展示讲解、质疑补充等,给予他们更多展示自己的机会和舞台。这是本节课的成功之处。

  不足之处是时间安排不够科学合理,学生展示时间过长。

不等式教学反思4

  用函数的观点看方程(组)和不等式,是学生应该学会的一种数学思想方法。教学过程中要让学生理解一次函数与一元一次方程、一元一次不等式、二元一次方程组的内在联系,明白方程(组)、不等式与函数三者之间可以相互转化、相互渗透,让学生成为学习的主导者,主动去观察、分析、归纳与总结,得到更深刻、透彻的知识点,并且让学生在交流中体会成功。

  教学优点:

  1、能积极学习并采用多媒体课件进行授课。应用多媒体课件直观、明了的展示了一次函数与一元一次方程、一元一次不等式及二元一次方程的联系,且课堂容量大、课堂效率高。运用幻灯片让枯燥的理论知识直观、形象、生动起来,激发了学生学习的积极性。

  2、“数形结合”思想的完美体现。我能够利用一次函数图象从“形”方面直观地表示方程(组)和不等式的'解或解集的含义,反过来,又从“数”的方面来解释方程(组)的解及不等式的解集实质就是图象上对应点的自变量的取值或取值范围。这节课让学生充分感受到“数形结合”思想的重要性。

  教学不足:

  1、课堂容量有些大,学生组内讨论时间较少,学生单独回答问题的机会也有点少。

  2、缺乏对学困生的关注、指导和帮助。

  3、对学生语言表达能力估计过高,用函数观点解释方程、不等式,学生只可意会,不会言语。

不等式教学反思5

  在教学过程中,利用生活中的实际问题,使学生感知到要解决的问题同时满足两个约束条件,而两个约束条件都是不等式,这样,引入不等式组就比较自然;在探究“不等式组的解集”时,引导学生运用数形结合的方法,引起了学生探究的兴趣,学生小组合作探究,利用已有知识,很容易得出求不等式组解集的方法。用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法。根据不等式组的四种情况,引导学生结合数轴归纳出“同大取大、同小取小、大小小大取中间、大大小小无处找”的口诀求解不等式组,运用口诀的同时,头脑中想象数轴,使数形有机结合。

  通过对本节课系统的回顾,梳理,我发现部分学生在由实际问题抽象为数学模型的过程中,存在一定的困难,教师要适时给以恰当引导,发展学生分析问题和解决问题的能力,并给学困生提供更多发言的机会。学生的.学习积极性有很大的提高,学习效果较好。原本枯燥的、抽象的纯数学的知识通过与实际联系,利用数形结合,变得有趣、易懂。

不等式教学反思6

  学习了实际问题与一元一次不等式后,我发现在学生学习起来比较困惑,存在以下问题:

  1.找不出广泛应用题中的不等关系,要解广泛应用题时相等关系比较明确,而在不等式中不等关系不是那样的明确,所以不少学生不太理解,因而列不出不等式,所以也不会解不等式的应用题。

  2.一部分学生虽然能列出不等式,可是在解不等式时一直出现错误,特别是当不等工的两边都乘或除以一个负数时,学生一直记不住不等式的方向要改变,导致计算错误,这可能对不等式的性质没有真正理解吧。

  3.不少应用题求出不等式的'解集时往往都会根据题意,让求出不等式的整数解,到这时一部分学生往往不能准确的求出整数解,这可能是对不等式解集的取值范围不是太明白。

  教后反思:在以后的教学中做注意的是,让学生熟练掌握不等式的性质,并能真正理解,能准确无误的求出不等式的解集。多进行不等式应用题的练习,让学生逐步理解和掌握找不等关系的方法,从而熟练的掌握列不等式解应用题的。要加强一些基础概念的掌握理解,对于整数,正整数以一些大于小于等的数学语言,要让学生准确理解,不能含含糊糊。

不等式教学反思7

  本章的重点是一元一次不等式的解法,难点是:不等式的解集、不等式的性质及应用不等式解决实际问题的能力,特别是实际问题中的列不等式求解。

  1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法。至于有些课外书用“同大取大、同小取小、大小小大取中间、大大小小解不了”求解不等式,我认为增加学生的学习负担,不易于培养学生的数形结合能力。在教学中我要求学生在解不等式(组)的`时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想。

  2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。要注意对一元一次方程相关知识的复习,让学生进行比较、归纳,理解它与一元一次不等式的的联系与区别(特别强调“不等式两边同时乘以或除以一个负数时,不等号方向改变”),教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。

  3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的要求,陷入旧教材“繁、难、偏、旧”的模式,重点加强文字与符号的联系,利用题目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。

  4、各种书籍出现的应用题里面文字有的自相矛盾,教学时教师要合理利用和指导学生选取辅导书,如课本“以外”与“至少”等。

不等式教学反思8

  《实际问题与一元一次不等式》是一节有难度的重量级实际应用课。在本节课的教学中,我先以购票问题送学生一个惊喜,让学生感受了数学魅力,激发了探究兴趣;同时又复习了不等式的性质,为解不等式要变号埋下伏笔。在较复杂的超市购物获得优惠的问题中,设计试购活动精彩纷呈,前二件商品的试购既让学生深入理解题意,体验优惠这一基本事实,又使分类讨论呼之欲出;后二件商品的试购既让学生的猜测不断清晰,又引发第二次分类,同时呈现方程与不等式,为类比提供了平台。通过修改关系符号类比方程解不等式,并进一步挑战带有中括号的`不等式的解法,实现跨越发展。而最后购车问题内化前面的知识与技能,同时又探究不等式的解如何转化为实际问题的解。三个问题层次分明,一线串珠,让数学的魅力在学生心中不断加深,数学源于生活又服务于生活的感悟不断积淀。而秘籍的总结形式增加趣味的同时,加深学生建模印象。

  改进之处:因在演播室录课,面对镜头与灯光,学生有些拘谨。由于时间关系,在表达本课感受时没有让更多的学生参入,结尾有些仓促。在以后的教学中,我将关注学生的学习动态,随时注意学生专注性及学习习惯的培养。

不等式教学反思9

  不等式是刻画现实世界中量与量之间不等关系的有效数学模型,一元一次不等式是表示不等关系的最基本的工具,是学生学习其他相关数学知识的基础。

  现行“苏科版”教材从身边的实际问题中建立不等式,从这些具体问题中的数量大小关系使学生了解不等式的意义,理解不等式相关概念,并探索了不等式的基本性质。

  不等式的基本性质的教学,是分成两个阶段进行的。对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。

  不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的`理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。

  解一元一次不等式的基础是一元一次方程的解法,两者基本类似,唯一不同的是不等式的两边同时乘以或除以一个负数时,不等号方向需要改变。在进行类比解一元一次方程与解一元一次不等式时既要说明它们的相同点,更要使学生明确它们的不同点,揭示各自的特殊性,从类比中进一步领会不等式的有关知识的特点和本质。

  在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

  本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

不等式教学反思10

  对于教师来说,“反思教学”就是教师自觉地把自己的课堂教学实践,作为认识对象而进行全面而深入的冷静思考和总结,它是一种用来提高自身的业务,改进教学实践的学习方式,不断对自己的教育实践深入反思,积极探索与解决教育实践中的一系列问题。简单地说,教学反思就是研究自己如何教,自己如何学。教中学,学中教。

  在讲完不等式的性质后,我根据学生情况安排三个课时学习解一元一次不等式,我们的设想是:第一课时:在简单理解不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一元一次不等式,注意其中的区别与联系(即类比思想),学会用数轴直观的表示不等式的解集(数形结合思想);第二课时:熟练解一元一次不等式;第三课时:一元一次不等式的应用。

  1、在学习本节时,要与一元一次方程结合起来,用比较、类比的方法去学习,弄清其区别与联系。

  2、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性。在数轴上表示不等式的解集是数形结合的具体体现。

  3、熟练掌握不等式的基本性质,特别是性质3.不等式的性质是正确解不等式的基础

  这节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,经历探索求一元一次不等式组解集的过程,并培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,从而使他们能准确的解一元一次不等式。

  本节课我觉得自己成功的地方有以下几点:

  1、出新:“兴趣是最好的老师”一节课如果能够从开始就可以吸引学生的注意,那么这节课就是一节好课。开篇用人机大战中的阿尔法狗来引起学生的注意。同时以挑战的语气激励起学生的好胜心和自豪感,为课堂注入了活力。保证了整节课学生的主动性。在练习阶段,以小组为单位,模仿河南电视台的汉字英雄栏目。让学生自己挑选题目,小组为单位进行挑战,其他小组进行挑毛病。既锻炼了学生的`知识掌握能力,也锻炼了学生的集体主义精神和合作意识。同时也锻炼了学生的观察敏锐和专注程度。

  2、整体的思路比较清晰:阿尔法狗的提问复习了不等式的相关内容,接下来让学生通过自学、小组讨论掌握一元一次不等式的定义和结构特征。然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业。整个流程比较流畅、自然;

  3、精心处理教材:我选的例题和练习刚好囊括了解一元一次不等式不同情况,以便为后面的归纳小结做好准备;

  4、教态自然、大方、亲切。能给学生以鼓励,能较好地激发学生的学习兴趣;比如在知识梳理环节李知希同学说的解一元一次不等式的步骤和课本上的不一样,杨振坤同学不同的解法,我觉得他们非常善于总结、类比和思考,所以我及时予以肯定;

  5、实效。本节课重点是学会解一元一次不等式。在课堂教学过程中,让学生通过自我思考、小组讨论、师生共议、例题展示等环节让学生掌握住一元一次不等式的解法步骤。同时通过快速的训练让学生把握住一元一次不等式的解法。把学生容易出错的地方让学生反复的训练。攻克难点,总体的收效比较好。

  本节课较好的方面:

  1、 本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;

  2、 课程内容前后呼应,前面练习能够为后面的例题作准备

  3、 能安排有小测等对学生学习的知识进行检查;

  不足方面:

  1、引入部分练习所用时间太长,讲评一元一次不等式的概念太细致,导致了后段时间紧,部分内容不能完成

  2、课容量少,害怕学生听不懂、学不会,所以上课时喜欢给学生反复讲,结果课堂上大部分时间由我占据,而留给学生自己独立思考,讨论的时间较少。

  我深感,只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。这说明,一种新的教学理念要真正成为师生的教育行为,还有很长的路要走。我将和我的学生在这一探索过程中不断努力前行,总之,我们在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须多做一些事,例如精心设计适合学生的教学环节,多思考一些学生所想的,真正做好学生前进道路上的领路人。

不等式教学反思11

  在教学过程中看出,由于学生的知识结构的差异思维品质的不同,其解题的方法也不相同。上课时,我面对学生各种解法,让同学们先小组讨论,充分暴露思维过程,然后全班讨论,对各种解法及思维过程给与评价。由于启发得好,本节课的教学效果感觉良好,在学习知识的同时发展了学生的思维。下面就如何发展学生的思维谈谈自己的一些看法。

  1、暴露思维过程,发展学生思维。

  暴露思维过程是发展学生思维的有效手段。教学活动中,师生双方都必须充分暴露思维过程。教师经常把自己置于困境中,然后再现从中走出来的过程,让学生看到教师的思维过程。学生自己动脑、动手,在尝试、探索的过程中,鼓励学生发表自己的看法,充分暴露学生的思维,通过多维的交流,从而找到解决问题的方法。我们要在暴露学生思维的过程中,评价学生的思路,改善学生的思维品质,着重培养思维的敏捷和灵活,使他们在分析中学会思考,需要把面对的问题通过转化、分析、综合、假设、对比等中求得简捷,在运用中变得灵活,在疏漏后学得缜密。

  2、抓住知识间的内在联系,发展学生思维。

  系统性、逻辑性是数学的主要特征之一。数学本身的知识间的内在联系是很紧密的,各部分知识都不是孤立的,而是一个结构严密的整体。数学教学主要是思维活动的教学,只有根据学生的认知特点,引导学生按照思维过程的规律进行思维活动,才能提高学生的思维能力。为此,教学应从较好的知识结构出发,把教学的重点放在引导学生分析数量关系上,依据知识之间的逻辑关系和迁移条件,引导学生抓住旧知识与新知识的连接点,抓住知识的`生长点,抓住逻辑推理的新起点。这样就自然地把新的知识与已有的知识科学地联系起来。新的知识一经建立,便会纳入到学生原有的认知结构中去,建成新的知识系统。

  3、激发求知欲望,发展学生思维

  在课堂教学中,教师生动活泼的教学语言,具体的教学内容,灵活多样的教学形式,在唤起学生数学思维情趣的基础上,适时适度地调控,让学生在"心求通而未通"、"口欲书而不能"的"愤徘"状态之中,这种"道弗牵、强弗抑、开弗达"的思维激发,有助于学生的数学思维欲望的提高,有助于学生探究数学知识,数学问题的兴趣。这样,学生的思维活动也就启动、开展,学生的数学思维能力和素质得到发展,得到提高。

不等式教学反思12

  数学来源于生活,又应用于生活。因此我们在认识不等式的教学过程中大量地运用现实生活情景:如跷跷板问题、上学迟到等实际情境引入与学生共同探索,让学生在探索中发现新的知识,认识不等式,让学生意识到不等关系和相等关系都是现实生活中的重要数量关系,意识到数学就在我们身边,离我们是那么的近,增强学生学习的兴趣与自信心。

  本节的`主要内容是一元一次不等式解法及其简单应用。这是继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是培养学生分析问题和解决问题能力的重要内容。本节的教学设计主要是改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放性教学。

  不等式的基本性质和解一元一次不等式,是一些基本的运算技能,也是学生以后学习一元二次方程、函数,以及进一步学习不等式知识的基础。由于不等式是刻画现实世界中量与量之间变化规律的重要模型,因此,我们在一元一次不等式的应用教学中通过与生活贴近的具体例子渗透量与量之间内在联系,帮助学生从整体上认识不等式,感受不等式的作用,进一步提高学生分析问题解决问题的能力,增强学生学数学、用数学的意识。

不等式教学反思13

  本节课我采用从生活中假设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

  课堂开始通过智力比拼引入课题。激发学生的学习兴趣以及积极性。通过简单的问题引导学生通过探究得出不等式的性质1.然后通过比较简单的不等式的变化,探究出不等式的性质2和3.在这一环节上,留给学生思考的时间有点少。

  接下来的问题设计是为了类比等式的基本性质,研究不等式的`性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。

  练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。同时使学生体会数学中的分类讨论思想。

  本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题。比如探究的问题比较简单,在使学生体会类比思想以及分类讨论思想时,也可以通过问题设计体会数形结合的思想。但是怕学生接受

  不了高难度的题目,因此在设计教案时经过反复思考,终究没有选择类似的题目。终究是不放心学生。我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。

不等式教学反思14

  本节教学,有以下几点特别值得回味。

  1、从生活中来回到生活中去的教学设计

  新课标指出:“数学的教学活动必须建立在学生的认知发展水平和已有知识经验基础上。”心理学的研究表明,学习内容和学生生活背景、知识背景越接近,学生自觉接纳知识懂得的程度就越高。导入的恰当、合理会引起学生极大的学习兴趣,对知识的衔接和理顺起到画龙点睛的作用,又对新知识起到设疑、点拔的作用。用学生身边感兴趣的实例过马路、跷跷板体验生活中的不等式,一方面引起学生的参与欲,另一方面也体现了知识拓展的需要。因为这样既可引出一元一次不等式的意义,又让学生产生学习不等式的需求,也使学生对解不等式的方法有了很自然的联想让学生充分感受到学习一元一次不等式的`必要性。使学生进一步认识到“数学来源于生活,反过来又为生活服务”,增强学好数学的信心与决定。

  2、重视数学思想方法的渗透

  数学思想方法是数学的灵魂,知识转化为能力的桥梁。在整节课的教学中都非常重视数学思想方法的渗透。学习不等式时,类比方程、不等式解集的概念,渗透“类比”思想。使学生在已有知识上进行迁移,在主动参与、探索交流中不知不觉学到了新知识。利用数轴求不等式的解集,渗透“数形结合”思想。掌握不等式的解集在数轴上的表示,利用数轴把解集讲解得非常透彻,使学生充分认识到“数形结合”思想方法的用处。列不等式解决实际问题,渗透“建模”思想,培养学生应用数学的意识。最后的小结,不是流俗的学习内容小结,而是思想方法的小结,它起到了提纲挈领,梳理总结的目的。

  3、重视数学的“再创造”

  课堂教学改革的宗旨和根本出发点是:改善和促进学生全面、持续、和谐地发展。建构主义理论强调学习的主动性、社会性和情景性,认为学习者不是知识信息的被动吸收者,而是主动积极的建构者。留给学生的作业:完成课外探究题,借助数轴归纳求不等式的解集一般规律。教学时重视了数学的“再创造”,由学生本人把需学的东西自己去发现和创造出来。

  学生的学习不再是一种被动地吸收知识,反复练习,强化储存知识的过程,而是通过反复研究、探索、思考、概括,亲身经历“再创造”的探究性学习过程,从而自主获得知识。

  总之,教学设计时体现新课程标准的思想和理念,注重知识与能力并重,培养发展学生自主探索的独立思考精神。

不等式教学反思15

  本节课由一次函数讨论了三个已书法家对象:一元一次方程、一元一冷饮不等式和二元一次方程组,这些不是新知识,但对其认识还有待于进一步深入,本节用函数的观点对它们进行分析,这种再认识不是简单的回顾复习,而是居高临下的进行动态分析。因此,教学中,一定要把握内容的要求尺度。通过 本节课的教学,应加强知识间横向和纵向的联系。发挥函数对相关内容的统作用,能用一冷饮函数的观点把以前学习的方程与不等式进行整合。

  本节课的教学发现:有一小部分的学生还是不懂得看函数不理解函数值大于0、小于0进所对应的自变量的值应如何看,如何写出满足条件的答案。因此,建议在教学过程中增加看图的练习题:知道函数值的范围求自变量的取值范围,知道自变量的取舍范围求函数值 的`范围等类型的题目。

  另外,运用所学知识解决实际问题是学生学习的目的,是重点,但也是学生的难点。尽管学生难接受,介是在教学的过程 中不要回避,要慢慢引导,加强训练,争取让学生能理解题目,掌握解题方法与技巧,从而提高技能。